
EPTCS 110

Proceedings of the

7th International Workshop on

Computing with Terms and Graphs
Rome, 23th March 2013

Edited by: Rachid Echahed and Detlef Plump

Published: 25th February 2013
DOI: 10.4204/EPTCS.110
ISSN: 2075-2180
Open Publishing Association

R. Echahed and D. Plump (Eds.): 7th International Workshop on
Computing with Terms and Graphs
EPTCS 110, 2013, pp. i–ii, doi:10.4204/EPTCS.110.0

c© R. Echahed and D. Plump
This work is licensed under the
Creative Commons Attribution License.

Preface

This volume contains the proceedings of the Seventh International Workshop on Computing with Terms
and Graphs (TERMGRAPH 2013). The workshop took place in Rome, Italy, on March 23rd, 2013,
as part of the sixteenth edition of the European Joint Conferences on Theory and Practice of Software
(ETAPS 2013).

Research in term and graph rewriting ranges from theoretical questions to practical issues. Com-
puting with graphs handles the sharing of common subexpressions in a natural and seamless way, and
improves the efficiency of computations in space and time. Sharing is ubiquitous in several research
areas, as witnessed by the modelling of first- and higher-order term rewriting by (acyclic or cyclic) graph
rewriting, the modelling of biological or chemical abstract machines, and the implementation techniques
of programming languages: many implementations of functional, logic, object-oriented, concurrent and
mobile calculi are based on term graphs. Term graphs are alsoused in automated theorem proving and
symbolic computation systems working on shared structures. The aim of this workshop is to bring to-
gether researchers working in different domains on term andgraph transformation and to foster their
interaction, to provide a forum for presenting new ideas andwork in progress, and to enable newcomers
to learn about current activities in term graph rewriting.

Previous editions of TERMGRAPH series were held in Barcelona (2002), in Rome (2004), in Vienna
(2006), in Braga (2007), in York (2009) and in Saarbrücken (2011).

These proceedings contain six accepted papers and the abstracts of two invited talks. All submissions
were subject to careful refereeing. The topics of accepted papers range over a wide spectrum, including
theoretical aspects of term graph rewriting, concurrency,semantics as well as application issues of term
graph transformation.

We would like to thank all who contributed to the success of TERMGRAPH 2013, especially the
Program Committee for their valuable contributions to the selection process as well as the contributing
authors. We would like also to express our gratitude to all members of the ETAPS 2013 organizing
committee for their help in organizing TERMGRAPH 2013.

February, 2013 Rachid Echahed and Detlef Plump

Program chairs of TERMGRAPH 2013

ii Preface

Program committee of TERMGRAPH 2013

Patrick Bahr University of Copenhagen, Denmark
Paolo Baldan University of Padova, Italy
Frank Drewes Umea University, Sweden
Rachid Echahed CNRS, University of Grenoble, France (co-chair)
Maribel Fernandez King’s College London, UK
Clemens Grabmayer Utrecht University, the Netherlands
Wolfram Kahl McMaster University, Canada
Ian Mackie Ecole Polytechnique, France
Detlef Plump University of York, UK (co-chair)

Additional Reviewers

Thibaut Balabonski
Simon Gay
Dimitri Hendriks
Yuhang Zhao

iii

Table of Contents

Preface .. i
Rachid Echahed and Detlef Plump

Table of Contents .. iii

On the Concurrent Semantics of Transformation Systems withNegative Application Conditions . . . 1
Andrea Corradini

Programming Language Semantics using K - true concurrency through term graph rewriting- 2
Traian Florin Serbanuta

Non-simplifying Graph Rewriting Termination 4
Guillaume Bonfante and Bruno Guillaume

Convergence in Infinitary Term Graph Rewriting Systems is Simple (Extended Abstract) 17
Patrick Bahr

Linear Compressed Pattern Matching for Polynomial Rewriting (Extended Abstract) 29
Manfred Schmidt-Schauss

Evaluating functions as processes .. 41
Beniamino Accattoli

Term Graph Representations for Cyclic Lambda-Terms 56
Clemens Grabmayer and Jan Rochel

Bigraphical Nets .. 74
Maribel Fernández, Ian Mackie and Matthew Walker

R. Echahed and D. Plump (Eds.): 7th International Workshop on
Computing with Terms and Graphs
EPTCS 110, 2013, pp. 1–1, doi:10.4204/EPTCS.110.1

c© A. Corradini
This work is licensed under the
Creative Commons Attribution License.

On the Concurrent Semantics of Transformation Systems
with Negative Application Conditions

Joint GT-VMT and TERMGRAPH Invited Talk

Andrea Corradini
Dipartimento di Informatica

Università di Pisa, Italy

A rich concurrent semantics has been developed along the years for graph transformation systems,
often generalizing in non-trivial ways concepts and results fist introduced for Petri nets. Besides the
theoretical elegance, the concurrent semantic has potential applications in verification, e.g. in partial
order reduction or in the use of finite prefixes of the unfolding for model checking. In practice (graph)
transformation systems are often equipped with Negative Application Conditions, that describe forbidden
contexts for the application of a rule. The talk will summarize some recent results showing that if the
NACs are sufficiently simple (”incremental”) the concurrent semantics lifts smoothly to systems with
NACs, but the general case requires original definitions andintuitions.

This is a joint work with Reiko Heckel, Frank Hermann, SusannGottmann and Nico Nachtigall

R. Echahed and D. Plump (Eds.): 7th International Workshop on
Computing with Terms and Graphs
EPTCS 110, 2013, pp. 2–3, doi:10.4204/EPTCS.110.2

c© T.F. Serbanuta
This work is licensed under the
Creative Commons Attribution License.

Programming Language Semantics using K
- true concurrency through term graph rewriting -

Traian Florin Serbanuta
University Alexandru Ioan Cuza of Iasi∗

Developed as a rewriting formalism for describing the operational semantics of programming lan-
guages, theK framework [8, 9, 10] proposes a new notation for (term) rewrite rules which identifies a
read-only context (or interface) which is not changed by a rewrite rule. This allows for enhancing the
transition system to model one-step concurrency with sharing of resources such as concurrent reads of
the same memory location and concurrent writes of distinct memory locations.

Given that graph transformations offer theoretical support for achieving parallel rewriting with shar-
ing of resources [2, 5, 4], and that the term-graph rewritingapproaches were developed as sound and
complete means of representing and implementing rewriting[1, 7, 3, 6], it seems natural to give seman-
tics toK through term-graph rewriting. However, the existing term-graph rewriting approaches aim at
efficiency: rewrite common subterms only once, without attempting to use context-sharing information
for enhancing the potential for concurrency. Consequently, the concurrency achieved by current term-
graph rewriting approaches is no better than that of standard rewriting. Moreover, the efficiency gained
by sharing subterms can inhibit behaviors in non-deterministic (e.g., concurrent) systems.

This talk summarizes the efforts of endowingK with a (novel) term-graph rewriting semantics devel-
oped with the aim of capturing the intended concurrency theK framework [11]. Challenges encountered
during this process and ideas for future development are presented and proposed for discussion.

References

[1] Hendrik Pieter Barendregt, Marko C. J. D. van Eekelen, John R. W. Glauert, Richard Kennaway, Marinus J.
Plasmeijer & M. Ronan Sleep (1987):Term Graph Rewriting. In: PARLE, pp. 141–158.

[2] Hartmut Ehrig & Hans-Jörg Kreowski (1976):Parallelism of Manipulations in Multidimensional Information
Structures. In: MFCS, LNCS 45, pp. 284–293.

[3] Annegret Habel, Hans-Jörg Kreowski & Detlef Plump (1987): Jungle Evaluation. In: ADT, LNCS 332, pp.
92–112.

[4] Annegret Habel, Jürgen Müller & Detlef Plump (2001):Double-pushout graph transformation revisited.
Mathematical Structures in Computer Science11(5), pp. 637–688. Available athttp://dx.doi.org/10.
1017/S0960129501003425.

[5] Hans-Jörg Kreowski (1977):Transformations of Derivation Sequences in Graph Grammars. In: FCT’77,
pp. 275–286.

[6] Masahito Kurihara & Azuma Ohuchi (1995):Modularity in Noncopying Term Rewriting. J. of TCS152(1),
pp. 139–169. Available athttp://dx.doi.org/10.1016/0304-3975(94)00248-3.

[7] Detlef Plump (1993):Hypergraph rewriting: critical pairs and undecidability of confluence. In: Term graph
rewriting: theory and practice, John Wiley and Sons Ltd., pp. 201–213.

∗This work was supported in part by the Contract 161/15.06.2010, SMISCSNR 602-12516 (DAK)

T.F. Serbanuta 3

[8] Grigore Rosu (2003):CS322, Fall 2003 - Programming Language Design: Lecture Notes. Technical Report
UIUCDCS-R-2003-2897, University of Illinos at Urbana Champaign. Lecture notes of a course taught at
UIUC.

[9] Grigore Rosu & Traian Florin Serbanuta (2010):An Overview of the K Semantic Framework. J. of Logic and
Algebraic Programming79(6), pp. 397–434. Available athttp://dx.doi.org/10.1016/j.jlap.2010.
03.012.

[10] Traian Florin Şerbănuţă (2010):A Rewriting Approach to Concurrent Programming Language Design and
Semantics. Ph.D. thesis, University of Illinois.

[11] Traian Florin Serbanuta & Grigore Rosu (2012):A Truly Concurrent Semantics for the K Framework Based
on Graph Transformations. In Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski & Grzegorz Rozenberg,
editors:ICGT, Lecture Notes in Computer Science7562, Springer, pp. 294–310. Available athttp://dx.

doi.org/10.1007/978-3-642-33654-6_20.

R. Echahed and D. Plump (Eds.): 7th International Workshop on
Computing with Terms and Graphs
EPTCS 110, 2013, pp. 4–16, doi:10.4204/EPTCS.110.3

Non-simplifying Graph Rewriting Termination

Guillaume Bonfante
LORIA

Université de Lorraine

Bruno Guillaume
LORIA

Inria Nancy Grand-Est

So far, a very large amount of work in Natural Language Processing (NLP) rely on trees as the core
mathematical structure to represent linguistic informations (e.g. in Chomsky’s work). However,
some linguistic phenomena do not cope properly with trees. In a former paper, we showed the
benefit of encoding linguistic structures by graphs and of using graph rewriting rules to compute on
those structures. Justified by some linguistic considerations, graph rewriting is characterized by two
features: first, there is no node creation along computations and second, there are non-local edge
modifications. Under these hypotheses, we show that uniform termination is undecidable and that
non-uniform termination is decidable. We describe two termination techniques based on weights and
we give complexity bound on the derivation length for these rewriting systems.

1 Introduction

Linguists introduce different levels to describe a natural language sentence. Starting from a sentence
given as a sequence of sounds or as a sequence of words; among the linguistic levels, two are deeply
considered in literature: the syntactic level (a grammatical analysis of the sentence) and the semantic
level (a representation of the meaning of the sentence). These two representations involve mathematical
structures such as logical formulae, λ -terms, trees and graphs.

I see that Mike begins to work

SUBJ SUBJ AUX

CPL COMP

COMP

One of the usual ways to describe syntax is to use the
notion of dependency [16]. A dependency structure is an
ordered sequence of words, together with some relations
between these words. For instance, the sentence ”I see
that Mike begins to work” can be represented by the struc-
ture on the right.

There is a large debate in the literature about the mathematical nature of the structures needed for
natural language syntax: do we have to consider trees or graphs? Trees are often considered for their
simplicity; however, it is clearly insufficient. Let us illustrate the limitations of tree-representations with
some linguistic examples. Consider the sentence ”Bill expects Mary to come”, the node ”Mary” is
shared, being the subject of ”come” and the object of ”expects” (below on the left). The situation can
be even worse: cycles may appear such as in the sentence below where edges in the cycle are drawn with
dashed line (below on the right).

Bill expects Mary to come

SUBJ OBJ AUX

SUBJ

COMP

a book which is hard to read

DET ANT SUBJ ATS AUX

REL COMP

OBJ

G. Bonfante and B. Guillaume 5

BYTEvTHEq

CATn

RSTR

THEq

DOGn

RSTR

BARKv

ARG1

possv

ARG2

TOYn

ARG1

ARG1

A
RG

2EQ

EQ

defq

RS
TR

For the semantic representation of
natural language sentences, first order
logic formulae are widely used. To
deal with natural language ambiguity,
a more compact representation of a set
of logic formulae (called underspeci-
fied semantic representation) is used.
DMRS [4] is one of these compact rep-
resentation. The DMRS structure for
the sentence ”The Dog whose toy the
cat bit barked” is given in the figure on
the right.

To describe transformations between syntactic and semantics structures, there are solutions based on
many computational models (finite state automata, λ -calculus). It is somewhat surprising that Graph
Rewrite Systems (GRS) have been hardly considered so far ([8, 1, 5, 9]). To explain that, GRS im-
plementations are usually considered to be too inefficient to justify their extra-generality. For instance,
pattern matching does not take linear time where this is usually seen as an upper limit for fast treatment.

However, if one drops for a while the issue of efficiency, the use of GRS is promising. Indeed,
linguistic considerations can be most of the time expressed by some relations between a few words.
Thus, they are easily translated into rules. To illustrate this point, in [3, 12], we proposed a syntax to
semantics translator based on GRSs: given the syntax of a sentence, it outputs the different meaning
associated to this syntax.

In the two earlier mentioned studies, we tried to delineate what are the key features of graph rewriting
in the context of NLP. Roughly speaking, node creation are strictly restricted, edges may be shifted from
one node to another and there is a need for negative patterns. Based on this analysis, we define here a
suitable framework for NLP (see Section 3).

Compared to term rewriting, the semantics of graph rewriting is problematic: different choices can
be made in the way the context is glued to the rule application [15]. As far as we see, our notion does
not fit properly the DPO approach due to unguarded node deletion nor the SPO approach due to the shift
command, as we shall see. Thus we will provide a complete description of our notion. We have chosen
to present it in an operational way and we leave for future work a categorial semantics.

In our application, we use several hundreds of rules. To manage such a system, we use a notion of
modular graph rewriting system: the full set of rules is divided in smaller subsets (called modules) that
are used in turn.

In practice, we need some tools to verify termination and confluence properties of modules. In
Section 4, we provide two termination methods based on a weight analysis. First, there is a direct moti-
vation: in our NLP application, any computations should terminate. If it is not the case, it means that the
rules where not correctly drawn. Then, termination ensures partly the correctness of the transformation.
There is also an indirect reason to consider termination: one way of establishing confluence is through
Newman’s Lemma [11] which requires termination.

We consider two properties of the above mentioned termination methods. First, we show that they
are decidable, that is the existence of weights can be computed statically from the rules, and thus we have
a fully automatic tool to verify termination. Obviously, it is not complete. In a second step, we evaluate
the strength of the two methods. To do that, we consider what restrictions they impose on the length of
computations. We get quadratic time for the first method, polynomial time for the second. This article is
an extended abstract of [2].

6 Non-simplifying Graph Rewriting Termination

2 Linguistic motivations

Without any linguistic exhaustivity, we highlight in this section some crucial points of the kind of linguis-
tic transformation we are interested in and hence the relative features of rewriting we have to consider.

Node preservation property. As linguistic examples above suggest, the goal of linguistic analysis is
mainly to describe different kinds of relations between elements that are present in the input structure.
As a consequence, the set of nodes in the output structure is directly predictable from the input and only
a very restrictive notion on node creation is needed. In practice, these node creations can be anticipated
in some enriched input structure on which the whole transformation can be described as a non-size
increasing process.

X Y
begins

Z
to

T

SUBJ AUX

COMP

X Y
begins

Z
to

T

AUX

MOD

SUBJEdge shifting. In the first example of the introduction (for
the sentence ”I see that Mike begins to work”), the verb
”begins” is called a raising verb and we know that ”Mike”
is the deep subject of the verb ”work”; ”begins” being con-
sidered as a modifier of the verb. To recover this deep subject, one may imagine a local transformation
of the graph which turns the first graph on the right into the second one.

However, in our example above, a direct application of such a transformation leads to the structure
below on the left which is not the right structure. Indeed, the transformation should shift what the
linguists call the head of the phrase ”Mike begins to work” from the word ”begins” to the word ”work”
with all relative edges. In that case, the transformation should produce the structure below on the right:

I see that Mike begins to work

SUBJ AUXCPL

MODCOMP

SUBJ

I see that Mike begins to work

SUBJ AUX

MOD

SUBJ

CPL

COMP

In a more general setting, our transformations may have to specify the fact that all incident edges of
some node X must be transported to some other node Y . We call this operation shift.

To describe our graph rewriting rules, we introduce a system of commands (like in [6]) which ex-
presses step by step the modifications applied on the input graph. The transformation described above is
performed in our setting as follows:

X Y
begins

Z
to

T

SUBJ AUX

COMP

del edge (Y,SUBJ,X); del edge (Y,COMP,T);
add edge (T,SUBJ,X); add edge (T,MOD,Y);
shift (Y,T)

Negative conditions. In some situation, rules must be aware of the context of the pattern to avoid
unwanted ambiguities. When computing semantics out of syntax, one has to deal with passive sentence;
the two sentences below show that the agent is optional.

The banana was eaten

DET AUX

SUBJ

The banana was eaten by Mike

DET AUX AGT OBJ

SUBJ

G. Bonfante and B. Guillaume 7

In order to switch to the corresponding active form, two different linguistic transformations have to
be defined for these two sentence; but, clearly, the first graph is a subgraph of the second one. We don’t
want the transformation for the short passive on the left to apply on the long passive on the right. we
need to express a negative condition like “there is no out edge labeled by AGT out of the main verb” to
prevent the unwanted transformation to occur.

The woman whom John seems to love

DET SUBJ AUX

COMPMOD_REL

OBJLong distance dependencies. Most of the lin-
guistic transformation can be expressed with suc-
cessive local transformation like the one above.
Nevertheless, there are some cases where more
global rewriting is required; consider the sentence ”The women whom John seems to love”, for which
we consider the syntactic structure on the right. One of the steps in the semantic construction of this
sentence requires to compute the antecedent of the relative pronoun ”whom” (the noun ”woman” in our
example).

X
PRO_REL

Y Z T

OBJ (OBJ|COMP)* MOD_REL

add edge (X,ANT,T)

The subgraph we have to search in our graph (which
is depicted as a non-local pattern) and the graph modifi-
cation to perform are given on the right. The number of
OBJ or COMP relations to consider (in the relation de-
picted as (OBJ|COMP)* in the figure) is unbounded (in
linguistics, this phenomenon is called long distance dependencies); it is possible to construct grammati-
cal sentences with an arbitrary large number of relations.

As we want to stay in the well-known framework of local rewriting, we will use several local trans-
formations to implement such a non-local rule.

X
PRO_REL

Y

OBJ

add edge (X,TMP,Y)

X Y Z

TMP OBJ

del edge (X,TMP,Y)
add edge (X,TMP,Z)

X Y Z

TMP COMP

del edge (X,TMP,Y)
add edge (X,TMP,Z)

X Z T

TMP MOD_REL

del edge (X,TMP,Z)
add edge (X,ANT,T)

The second and the third rules above preserve the set of nodes and the number of edges of each kind.
Hence, this kind of rule will require special treatment with respect to termination issues.

3 Graph Rewriting for NLP

Before we enter into the technical sections, let us define some useful notations. First, we use the notation
~c to denote sequences. The empty sequence is written /0. The length of a sequence is denoted by |~c |. We
use the same notation for sets: the empty set is denoted /0 and the cardinality of a set S is written |S|. The
context will make clear whether we are talking about sequences or sets.

Given a function f : X→Y and some sets X ′ ⊆ X and Y ′ ⊆Y , we define f (X ′), { f (x) | x ∈ X ′} and
f−1(Y ′), {x∈ X | f (x)∈Y ′}; the restriction of the function f to the domain X ′ is f |X ′ : x′ ∈ X ′ 7→ f (x′).
The function cX : x∈ X 7→ c∈Y is the constant function on X . The identity function is written 1. Finally,
given a function f : X → Y and (x,y) ∈ X×Y , the function f [x 7→ y] maps t 6= x to f (t) and x to y.

The set of natural numbers is N, integers are denoted by Z. Given two integers a,b, we define
[a,b] = {x ∈ Z | a≤ x≤ b}.

8 Non-simplifying Graph Rewriting Termination

3.1 Graphs

The graphs we consider are directed graphs with both labels on nodes and labels on edges. We restrict
the edge set: given some edge label e, there is at most one edge labeled e between two given nodes α
and β . This restriction reflects the fact that, in NLP application, our edges are used to encode linguistic
information which are relations. We make no other explicit hypothesis on graphs: in particular, graphs
may be disconnected, or have loops.

In this paper, we suppose given a finite set ΣE of edge labels and another finite set ΣN of node labels.

Definition 3.1 (Graph). A graph G is defined as a triple (N , `,E) where

• N is a finite set of nodes;

• ` is a labeling function: ` : N 7→ ΣN;

• E is a set of edges: E ⊆N ×ΣE ×N .

Let n,m ∈N and e ∈ ΣE . When there is an edge from n to m labelled e (i.e. (n,e,m) ∈ E), we write
n e−→ m or n−→ m if the edge label is not relevant. If G denotes some graph (N , `,E), then NG, `G,
EG denote respectively N , ` and E .

Definition 3.2 (Graph morphism). A graph morphism µ from the graph G = (N , `,E) to the graph
G′ = (N ′, `′,E ′) is a function from N to N ′ such that:

• for all n ∈N , `′(µ(n)) = `(n);

• for all n,m ∈N and e ∈ ΣE , if n e−→ m ∈ E then µ(n) e−→ µ(m) ∈ E ′.

A graph morphism µ is said to be injective if µ(n) = µ(m) implies n = m. We make the follow-
ing abuse of notation: given some graph morphism µ : G→ G′, and a set E ⊆ EG, we let µ(E) =
{µ(n) e−→ µ(m) | n e−→ m ∈ E}.
Definition 3.3 (Basic pattern and basic matching). A basic pattern B is a graph. A basic matching µ of
the basic pattern B in the graph G is an injective graph morphism µ (written µ : B ↪→ G).

As shown in Section 2, negative conditions on patterns naturally arise in NLP. We classify negative
conditions in two categories: the local ones, that is negative conditions on edges within the basic pattern
and non-local ones, that is negative conditions concerning edges between a node of the basic pattern and
a node of the context (either in-edges or out-edges).

Definition 3.4 (Pattern). A pattern is a quadruple P = (B, Ē ,Ī ,Ō) of:

• a basic pattern B = (NP, `P,EP);

• a set of forbidden edges Ē ⊂NP×ΣE ×NP such that Ē ∩EP = /0;

• a set of forbidden in-edges Ī ⊂NP×ΣE

• a set of forbidden out-edges Ō ⊂NP×ΣE

Given a basic pattern B, we shorten (B, /0, /0, /0) to (B,~/0). In the following, given a pattern P, NP and
EP denote respectively the set of nodes of its basic pattern and the set of edges of its basic pattern.

Definition 3.5 (Matching). Let P = (B, Ē ,Ī ,Ō) be a pattern, G = (N , `,E) be a graph, and µ : B ↪→G
be a basic matching. We say that µ is a matching from P into G (also written µ : P ↪→ G) whenever it
satisfies the additional three conditions:

• µ(Ē)∩E = /0

G. Bonfante and B. Guillaume 9

• for each (n,e) ∈ Ī , {p ∈N \µ(NP) | p e−→ µ(n)}= /0

• for each (n,e) ∈ Ō , {p ∈N \µ(NP) | µ(n) e−→ p}= /0

Example 3.1. Negative conditions are used to remove ’unwanted’ matching. To see their effect, consider
for instance the basic pattern B0 and its two basic matchings µ1 and µ2 in G0:

b0:α b1:βAµ1

g0:α

g1:β

g2:α

A

B

D

C

AE

µ2

g0:α

g1:β

g2:α

A

B

D

C

AE

• First, let P0 = (B0,~/0). Then, µ1 and µ2 are (the) two matchings P0 ↪→ G0.

• Second, let the pattern P1 = (B0,{(b1,C,b0)}, /0, /0); then, µ1 is the only matching P1 ↪→ G0.

• Third, let the pattern P2 = (B0, /0,{(b0,D)},{(b0,D)}). Then, there is no matching of P2 into G0.

In the following, patterns P1 and P2 are depicted as:

P1 = b0:α b1:β
A

C
×

P2 = b0:α b1:βA
D×

D×

3.2 Graph decomposition

The proper description of actions of a rule on some graph G requires first the definition of two partitions:
one on nodes and the other on edges. They are both induced by the matching of some pattern P into G.

Definition 3.6 (Nodes decomposition: pattern image, crown and context). Let µ : P ↪→ G a matching
from the pattern P into the graph G = (N , `,E). Nodes of G can be split in a partition of three sets
N = Pµ ⊕Kµ ⊕Cµ :

• the pattern image is Pµ = µ(NP);

• the crown contains nodes outside the pattern image which are directly connected to the pattern
image: Kµ = {n ∈N \Pµ | ∃p ∈Pµ such that n−→ p or p−→ n};

• the context contains nodes not linked to the pattern image: Cµ = N \ (Pµ ∪Kµ).

Definition 3.7 (Edges decomposition: pattern edges, crown edges, context edges and pattern-glued
edges). Let µ : P ↪→ G a matching from the pattern P into the graph G = (N , `,E). Edges of G can be
split in a partition of four sets E = µ(EP)⊕K µ ⊕C µ ⊕H µ :

• the pattern edges is µ(EP);

• the crown edges set contains edges which links a pattern image node to a crown node: K µ =
{n−→ m ∈ E | n ∈Pµ ∧m ∈Kµ}∪{n−→ m ∈ E | n ∈Kµ ∧m ∈Pµ};

• the context edges set contains edges which connect two nodes that are not in the pattern image:
C µ = {n−→ m ∈ E | n /∈Pµ ∧m /∈Pµ}.

• the pattern-glued edges set contains edges which are not pattern edges but which connect two
nodes that are in the pattern image: H µ = {n−→ m ∈ E | n ∈Pµ ∧m ∈Pµ}\µ(EP).

10 Non-simplifying Graph Rewriting Termination

3.3 Rules

In our graph rewriting framework, the transformation of the graph is described through some atomic com-
mands (like in [6]). Commands definition refer to some pattern P and pattern nodes NP are used as iden-
tifiers. Let a,b∈NP, α ∈ΣN and e∈ΣE , the five kinds of commands are label(a,α), del edge(a,e,b),
add edge(a,e,b), del node(a) and shift(a,b).

Their names speak for themselves, however, we will come back to their precise meaning in the
subsection below. Before this, to ensure that commands always refer to valid node identifiers, we restrict
command sequences to consistent sequences, that is sequences c1, . . . ,ck such that for each command ci,
1≤ i≤ k, which is a node deletion command del node(a) for some a ∈NP, then the node name a does
not occur in any command c j with i < j ≤ k.

Definition 3.8 (Rule). A rule R is a pair R = 〈P,~c〉 of a pattern P and a sequence of commands ~c
consistent with respect to P. A rule R = 〈P,~c〉 is said to be node-preserving if ~c does not contain any
del node command.

3.4 Graph Rewrite System

Let G = (N , `,E) a graph, R = 〈P,~c〉 a rule and µ : P ↪→G a matching. The application of the sequence
~c on G is a new graph which is written G ·µ~c (shortened G ·~c when µ is clear from the context) and is
defined by induction on the length k of~c. If k = 0, G · /0 = G. If k > 0, let G′ = (N ′, `′,E ′) be the graph
obtained by application of the sequence c1, . . . ,ck−1; then we consider each command in turn:

Label: The command ck = label(a,α) changes the label of the node µ(a): G ·~c = (N ′, `′′,E ′) with
`′′ = `′[µ(a) 7→ α].

Delete: The command ck = del edge(a,e,b) deletes the edge from µ(a) to µ(b) labelled with e ∈ ΣE ;
G ·~c = (N ′, `′,E ′′) with E ′′ = E ′ \{µ(a) e−→ µ(b)}.

Add: The command ck = add edge(a,e,b) adds an edge from µ(a) to µ(b) labelled with e ∈ ΣE ;
G ·~c = (N ′, `′,E ′′) with E ′′ = E ′∪{µ(a) e−→ µ(b)}.

Delete node: The command ck = del node(a) removes the node µ(a) of G′; G ·~c = (N ′′, `′′,E ′′) with
N ′′ = N ′ \{µ(a)}, `′′ = `′|N ′′ and E ′′ = E ′∩{N ′′×ΣE ×N ′′}.

Shift edges: The command ck = shift(a,b) changes in-edges of µ(a) starting from the crown to in-
edges of µ(b) and all out-edges of µ(a) going to the crown to out-edges of µ(b). Formally,
G ·~c = (N ′, `′,E ′′) with the set E ′′ defined by, for all e ∈ ΣE :

• for all p ∈Kµ , µ(b) e−→ p ∈ E ′′ iff µ(b) e−→ p ∈ E ′ or µ(a) e−→ p ∈ E ′;

• for all p ∈Kµ , p e−→ µ(b) ∈ E ′′ iff p e−→ µ(b) ∈ E ′ or p e−→ µ(a) ∈ E ′;

• for all p,q ∈Pµ , p e−→ q ∈ E ′′ iff p e−→ q ∈ E ′;

• for all p,q ∈Kµ ∪Cµ , p e−→ q ∈ E ′′ iff p e−→ q ∈ E ′.

The commands label, del edge and add edge are called local commands: they modify only the
edges and the nodes described in the pattern. The commands del node and shift are non-local: they
can modify edges outside the pattern. Note that a rule add edge (resp. del edge) may have no effect
if the edge already exists (resp. does not exist). Note also that we can suppose that for a given sequence
~c and a given triple (a,e,b), there is at most one rule del edge(a,e,b) or add edge(a,e,b) in~c (if not,
only the last one is effective). Hence, we can define uniform rules:

G. Bonfante and B. Guillaume 11

Definition 3.9 (Uniform rule). For~c= c1, . . . ,ck without node deletion, the rule 〈P,~c〉 is uniform iff for all
1≤ i≤ k, if ci = add edge(n,e,m) then (n,e,m) ∈ ĒP and if ci = del edge(n,e,m) then (n,e,m) ∈ EP.

Definition 3.10 (Rewrite step). Let G = (N , `,E) a graph, R = 〈P,~c〉 a rule and µ : P ↪→G a matching.
Let G′ = G ·~c, then we say that G rewrites to G′ with respect to the rule R and the matching µ . We write
it G→R,µ G′ or G→R G′ or even simply G→ G′.

Definition 3.11 (Graph Rewrite System). A Graph Rewrite System G is a finite set of rules.

In our application, the translation of the syntax to semantics is split into several independent levels
of transformation driven by linguistic consideration (such as translation of passive forms to active ones,
computation of the deep subject of infinites). Rules are then grouped in subsets called modules and
modules apply sequentially; each module being used as a graph rewrite system on the outputs of the
previous module.

Lemma 3.1 (Linear modification). Given a GRS G , there is a constant C > 0 such that, for any rewriting
step G→R,µ G′ the two canonical corresponding edge decompositions EG = C µ ⊕Qµ and EG′ = C µ ⊕
Q′µ satisfy:

|Qµ | ≤C× (|G|+1) and |Q′µ | ≤C× (|G|+1)

Proof. Let C =max{2×|P|2×|ΣE |} | 〈P,~c〉 ∈ G }. Both in G and G′, edges that are not in the context are
either between two pattern nodes or between a pattern node and a crown node. The total number of edges
of the first kind (either pattern edges or glued-pattern edges) is bounded by |P|2×|ΣE |. For each pattern
node, the number of edges which connect this node to some non-pattern node is bounded by 2×|G|×|ΣE |
and so the total number of edges which link some pattern node to some non-pattern node is bounded by
2×|G|× |ΣE |× |P|. Putting everything together, |Qµ | ≤C× (|G|+1) and |Q′µ | ≤C× (|G|+1).

4 Weighted GRS

We recall that a GRS is said to be (strongly) terminating whenever there is no infinite sequence G1 →
G2→ ··· . Given a terminating GRS G and a graph G, we define the derivation height of G, next denoted
hG (G), to be the length of the longest derivation starting from G if such a derivation exists. If hG (G) is
defined for all G such that |G| ≤ n, then we define the derivation height of G by: hG (n) = max{hG (G) |
|G| ≤ n}.

Actually, for non-size increasing GRS as presented above, we have immediately the decidability
of non-uniform termination. That is, given some GRS G and some graph G, one may decide whether
there is an infinite sequence G1 → G2 → G3 → ·· · . Indeed, one may observe that for such sequence,
for all i ∈ N, |Gi| ≤ |G|. Thus, the Gi’s range in the finite set G≤|G| of graphs of size less or equal to
|G|. Consequently, either the system terminates or there is some j ≤ |G≤|G|| and some k ≤ j such that
G j = Gk. To conclude, to decide non-uniform termination, it is sufficient to compute all the (finitely
many) possibilities of rewriting G in less than |G≤|G|| steps and to verify the existence of such a j and k
above. Finally, since |G≤|G|| ≤ 2O(|G|2), the procedure as described above takes exponential time.

However, uniform termination— given a GRS, is it terminating?— of non-size increasing GRS re-
mains an open problem. Uniform termination was proved undecidable when we drop the property of
non-size increasingness (cf. Plump [14]). As a consequence, there is a need to define some termina-
tion method pertaining to non-size increasing GRS. Compared to standard work in termination [13, 7],
there are two difficulties: first, our graphs may be cyclic, thus forbidding methods developed for DAGs
such as term-graphs. Second, using term rewriting terminology, our method should operate for some

12 Non-simplifying Graph Rewriting Termination

non-simplifying GRS, that is GRS for which the output may be ”bigger” than the input. Indeed, the NLP
programmer sometimes wants to compute some new relations, so that the input graph is a strict sub-graph
of the resulting graph.

4.1 Termination by weight analysis

In the context of term-rewriting systems, the use of weights is very common to prove termination. There
are many examples of such orderings, Knuth-Bendix Ordering [10] to cite one of them. We recall that
all graphs we consider are defined relatively to two signatures ΣE of edge labels and ΣN of node labels.

Definition 4.1 (Edge weight, node weight). An edge weight is a mapping w : ΣE → Z. Given some
subset E of edges of G, the weight of E is w(E) = ∑n e−→m∈E w(e). The edge weight of a graph G is
w(G) = w(EG). A node weight is a mapping η : ΣN → Z. For a graph G = (NG, `G,EG), we define
η(G) = ∑n∈NG

η(`G(n)).

Let us make some observations. Let |G|e denote the number of edges in G which have the label e,
then w(G) = ∑e∈ΣE w(e)×|G|e. Second, for a pattern matching µ : P ↪→ G, w(µ(P)) = w(P).

The weight of a graph may be negative. This is not standard, but it is useful here to cope with non-
simplifying rules, that is rules which add new edges. Since a graph G has at most |ΣE |× |G|2 edges, the
following lemma is immediate.

Lemma 4.1. Given an edge weight w and a node weight η , let Kw = maxe∈ΣE (|w(e)|), KE = |ΣE |×Kw,
Kη = maxα∈ΣN (|η(α)|), then

(a) for each subset of edges E ⊂ EG of some graph G, we have w(E)≤ Kw×|E|.
(b) for each graph G, we have −KE ×|G|2 ≤ w(G)≤ KE ×|G|2;

(c) for each graph G, we have |η(G)| ≤ Kη ×|G|.
Definition 4.2. Let R = 〈P,~c〉 a rule, we define inductively Φ~c : NP →NP which describes the global
effect of the shift commands in a rule: Φ /0 = 1; Φ~c,shift(m,n) = 1[m 7→ n]◦Φ~c and Φ~c,c = Φ~c if c is not
a shift command.

Definition 4.3 (Compatible weight). Given a rule R = 〈(P, Ē ,Ī ,Ō),~c〉, an edge weight w is said to be
compatible with R if:

1. either~c contains a del node command

2. or R is a node-preserving rule and satisfy the three properties:

(a) R is uniform,
(b) w(P ·1~c)< w(P),
(c) for all e ∈ ΣE such that w(e)< 0, for all n ∈Φ(NP), let Mn ⊂ EP be the set Φ−1

~c (n); then Mn

contains at most one element m such that (m,e) 6∈ Ī and Mn contains at most one element
m′ ∈Mn such that (m′,e) 6∈ Ō .

An edge weight is said to be compatible with a GRS G if it is compatible with all its rules. A weighted
GRS is a pair (G ,w) of a GRS and a compatible weight.

Hypothesis (2.b) will serve to manage edges in the pattern images while Hypothesis (2.c) will serve
for the crown edges. One may note that when there is no shift commands in the rule, the Hypothesis
(2.c) holds whatever w is. Indeed, in that case, Φ is the identity function and all the sets Mn are singletons.

G. Bonfante and B. Guillaume 13

Lemma 4.2. Let (G ,w) a weighted GRS, let G→G′ be a rewrite step of G . Either |G|> |G′| or |G|= |G′|
and w(G)> w(G′).

The problem of the synthesis is the following. Given a GRS G , is there a weight w compatible with
G ? Since the existence of weights can be described in Presburger’s arithmetic, we have a positive answer:

Theorem 4.1. Given a GRS G , one may decide whether or not it has a compatible weight.

Second point, the existence of weights induce termination:

Theorem 4.2. Any weighted GRS (G ,w) is strongly terminating in quadratic time. Moreover, this
quadratic bound is a lower bound: there is a GRS G with a compatible weight such that hG (n)≥O(n2).

Condition (2.c) of Definition 4.3 is necessary. Here is a counter-example of a non-terminating system
with a compatible weight up to this condition. Consider the two rules 〈Q1,~c1 〉 and 〈Q2,~c2 〉:

0:e 1:e

A

B

del edge(0,A,1)
shift(0,1) 3:e 4:e5:e

C

B
add edge(3,A,4)
add edge(5,C,3)

Set w(A) = w(B) = 1 and w(C) =−2. Observe that w(Q1 ·~c1) = 1 < 2 = w(Q1) and w(Q2 ·~c2) =−2 <
−1 = w(Q2). However, there is an infinite sequence G1→R1 G2→R2 G1→R1 · · · with G1 and G2 being:

0:e 1:e 2:e
A

B

C

C
0:e 1:e 2:e

B

C

�G1 = = G2

Proof sketch of Theorem 4.2. We begin to show the lower bound. Let ΣE = {E}, ΣN = {e}. Consider
the two rules GRS G defined by the two basic patterns:

0:e 1:e
E

del edge(0,E,1) 2:eE del edge(2,E,2)

Set w(E) = 1. The rules are compatible with w. Each rule deleting exactly one edge, since the clique
Cn of size n has n2 edges, the derivation height hG (Cn) = n2. The lower bound follows.

For the upper bound, let C be the constant as defined by Lemma 3.1, let K = max(1,Kw) (we recall
that Kw =maxe∈ΣE (|w(e)|)). Finally, let H =max{n | (P,c1, . . . ,cn)∈ G }. Let A = 2×K×C×(H+1)+
1. Let Ω be the ’energy function’ defined on graphs Ω(G) = w(G)+A×|G|2. For each rule application
G→ G′, one may verify that Ω(G) > Ω(G′). The last inequality together with Lemma 4.1 leads to the
conclusion.

Full proofs of Theorem 4.1 and of Theorem 4.2 are given in [2].

4.2 Termination by lexicographic weight

In our experiments, in most cases, the weight analysis of the preceding section was sufficient. The main
counter-example is however systems composed of rules as given in Section 2. The GRS is strongly
terminating but there is no compatible weight. This section provides a conciliable extension of this ter-
mination proof method. With a little abstraction, the linguistic example of Section 2 about long distance
dependencies is computed by some ’non-local rule’ Rnl:

14 Non-simplifying Graph Rewriting Termination

Rnl =

b0:P

b1:X b2:X

O

O

A
×

b′0:X b′1:X
O

b′2:X

M

A
×

add edge(b0,A,b′2)

Such non-local rules can be implemented by rules:

INIT REC STOP CLEAN

b0:P

b1:X

O

A ×

E
×

label(b0,P�)
add edge(b0,E,b1)

E×

E×
b0:P�

b1:X b2:X

E

O

A ×

E
×

add edge(b0,E,b2)

b0:P�

b1:X b2:X

E

M

A ×

E
×

add edge(b0,A,b2)

label(b0,P)

E×

E×
b0:P

b1:X

E

del edge(b0,E,b1)

Figure 1: Local implementation of the non-local rule

However, these rules are not compatible with any weight. Actually, as justified in [2], there is no imple-
mentation of such a rule by some weighted rules.

Given an order ≺ on some set U , its lexicographic extension to sequences in U is defined by
(u1, . . . ,uk) ≺lex (v1, . . . ,vm) iff ∃ j ≤ min(m,k) : u j ≺ v j ∧∀i < j : ui = vi. The order ≺lex is not well-
founded in general, but its restriction to sequences of equal length is such as soon as ≺ is well-founded.

Definition 4.4 (Contextual weight). An edge contextual weight is a (finite) map ω : ΣN×ΣE ×ΣN → Z.
As for weights, it extends to any set E ⊆ EG of some graph G by: ω(E) = ∑n e−→m∈E ω(`(n),e, `(m)). And
the weight of a graph is ω(G) = ω(EG).

A contextual weight is a 4-tuple π = (a,ω,b,η) with a,b ∈ N, ω an edge contextual weight and η a
node weight. We define π(G) = a×ω(G)+b×η(G).

Let e ∈ ΣE , if a 6= 0 and there are α,β ,α ′,β ′ ∈ ΣN such that ω(α,e,β) 6= ω(α ′,e,β ′), then we say
that π is e-fragile.

Definition 4.5. Given an edge weight w0 : ΣE → Z, given k contextual weights π1, . . . ,πk and a rule
R = 〈P,~c〉, we write P′ = P ·1~c. We say that R is compatible with (w0,π1, . . . ,πk) iff:

1. either~c contains a del node command,

2. or R is an uniform and node-preserving rule such that:

(a) either the two properties below hold
(i) w0(P′)< w0(P);

(ii) and for all e∈ ΣE such that w(e)< 0, for all n∈Φ(NP), let Mn be the set Φ−1(n); then
Mn contains at most one element m such that (m,e) 6∈ Ī and Mn contains at most one
element m′ ∈Mn such that (q,m′) 6∈ Ō .

(b) or the four properties below hold
(i) w0(P′) = w0(P);

(ii) (π1(P′), . . . ,πk(P′))<lex (π1(P), . . . ,πk(P));

G. Bonfante and B. Guillaume 15

(iii) if~c contains a command label(n,α) and if some πi is e-fragile, then (n,e) ∈ Ī ∪ Ō;
(iv) ~c does not contain any shift commands.

When a weight w0 and k contextual weights are compatible with all the rules of some GRS G , we
say that G is lexicographically weighted by (w0,π1, . . . ,πk).

Example 4.1. We define w0 = 0ΣE [A 7→ −1], and ω = 0ΣN×ΣE×ΣN [(P,E,X) 7→ 1,(P�,E,X) 7→ −1]. Con-
sider the lexicographic weight π = (1,ω,0,0ΣN). For rules in Figure 1, we have: rule STOP decreases
by (2.a); rules INIT and REC decrease by (2.b): there is one more edge labeled E starting from P� and
rule CLEAN decreases by (2.b): one edge labeled E starting from P disappears.

Theorem 4.3. Whenever a program G is compatible with the lexicographic weight (w0,π1, . . . ,πk), it is
strongly terminating in polynomial time. The bound is tight, that is for all k > 0, there is a GRS whose
derivation height is O(nk).

Proof. Examples for the lower bound are proposed in [2]. For the upper bound, let

Kω = max{|ω(n,e,m)| | (n,e,m) ∈ ΣN×ΣE ×ΣN} and Kπ = a×|ΣE |×Kω +b×Kη

Then, adapting Lemma 4.1(b) to the present context, we can state that |ω(G)| ≤ Kω ×|ΣE |× |G|2.
With Lemma 4.1(c), we have |η(G)| ≤ Kη ×|G| and finally |π(G)| ≤ a×Kω ×|ΣE |× |G|2 + b×Kη ×
|G| ≤ Kπ ×|G|2.

Let K0 = maxi∈[1,k](Kπi). Finally, let KE be the constant as given by Lemma 4.1 for w0, we define
K = max(K0,KE). Then, for all i≤ k, we have: |πi(G)| ≤ K×|G|2 and |w0(G)| ≤ K×|G|2.

Let κ(G) = (|G|,w0(G),π1(G), . . . ,πk(G)). If G→ G′, then κ(G) > κ(G′). Consider a sequence
G1 → G2 → ·· · . For all graph Gi of the sequence, |Gi| ≤ |G1|. Due to previous equations, κ(Gi) is
ranging in L = [0, |G1|]× [−K×|G1|2,K×|G1|2]k+1. Thus the result.

5 Conclusion

The polynomial derivation height that we have proved in the last section can be reconsidered in the
following way. The example of a GRS working in O(nk) can be used as a clock. Then, since each
transition of a (non-size increasing) Turing-Machine can be easily simulated by graph rewriting, we can
state that any PTIME-predicate can be simulated by a lexicographically weighted GRS (up to a polynomial
reduction). Since lexicographically weighted confluent GRS can be computed in polynomial time (each
rewriting step can be simulated in linear time), it becomes clear that lexicographically weighted GRSs
actually characterize PTIME. This provides a precise description of the computational content of the
method.

We have implemented a software —called GREW (grew.loria.fr)— based on the Graph Rewriting
definition presented in this article. In [12], the software was used to produce a semantically annotated
version of the French Treebank; in this experiment, the system contains 34 modules and 571 rules and
the corpus is constituted of 12 000 sentences of length up to 100 words. This experiment is a large scale
application which shows that the proposed approach can be used in real-size applications.

As said earlier, despite the global non-confluence of the system, we can isolate subsets of rules that
are confluent and use our system of modules to benefit from this confluence in implementation. In our
last experiment, 26 of our 34 modules are confluent, but confluence proofs are tedious. We leave for
further work the study of the local confluence of terminating GRS and the general study of confluence of
Graph Rewriting Systems.

16 Non-simplifying Graph Rewriting Termination

References
[1] B. Bohnet & L. Wanner (2001): On using a parallel graph rewriting formalism in generation. In: EWNLG

’01: Proceedings of the 8th European workshop on Natural Language Generation, Association for Computa-
tional Linguistics, pp. 1–11, doi:10.3115/1117840.1117847.

[2] G. Bonfante & B. Guillaume (2013): Non-size increasing Graph Rewriting for Natural Language Processing.
to appear in Mathematical Structures for Computer Science.

[3] G. Bonfante, B. Guillaume, M. Morey & G. Perrier (2011): Modular Graph Rewriting to Compute Semantics.
In: IWCS 2011, Oxford, UK, pp. 65–74.

[4] A. Copestake (2009): Invited Talk: Slacker Semantics: Why Superficiality, Dependency and Avoidance of
Commitment can be the Right Way to Go. In: Proceedings of the 12th Conference of the European Chapter
of the ACL (EACL 2009), Association for Computational Linguistics, Athens, Greece, pp. 1–9.

[5] D. Crouch (2005): Packed Rewriting for Mapping Semantics to KR. In: Proceedings of IWCS.
[6] R. Echahed (2008): Inductively Sequential Term-Graph Rewrite Systems. In: Proceedings of the 4th inter-

national conference on Graph Transformations, ICGT ’08, Springer-Verlag, Berlin, Heidelberg, pp. 84–98,
doi:10.1007/978-3-540-87405-8 7.

[7] E. Godard, Y. Métivier, M. Mosbah & A. Sellami (2002): Termination Detection of Distributed Algorithms
by Graph Relabelling Systems. In A. Corradini, H. Ehrig, H.-J. Kreowski & G. Rozenberg, editors: ICGT,
Lecture Notes in Computer Science 2505, Springer, pp. 106–119, doi:10.1007/3-540-45832-8 10.

[8] E. Hyvönen (1984): Semantic Parsing as Graph Language Transformation - a Multidimensional Approach
to Parsing Highly Inflectional Languages. In: COLING, pp. 517–520, doi:10.3115/980491.980601.

[9] V. Jijkoun & M. de Rijke (2007): Learning to Transform Linguistic Graphs. In: Second Workshop on
TextGraphs: Graph-Based Algorithms for Natural Language Processing, Rochester, NY, USA.

[10] D.E. Knuth & P.B. Bendix (1970): Simple word problems in universal algebras. In J. Leech, editor: Compu-
tational problems in abstract algebra, Pergamon, pp. 263–277.

[11] M. Newman (1942): On Theories With a Combinatorial Definition of ”Equivalence”. Annals of Math. 43(2),
pp. 223–243, doi:10.2307/1968867.

[12] G. Perrier & B. Guillaume (2012): Semantic Annotation of the French Treebank with Modular Graph Rewrit-
ing. In Jan Hajic, editor: META-RESEARCH Workshop on Advanced Treebanking, LREC 2012 Workshop,
META-NET, Istanbul, Turquie. Available at http://hal.inria.fr/hal-00760577.

[13] D. Plump (1995): On Termination of Graph Rewriting. In: Proceedings of the 21st International Workshop
on Graph-Theoretic Concepts in Computer Science, WG ’95, Springer-Verlag, London, UK, pp. 88–100,
doi:10.1007/3-540-60618-1 68.

[14] D. Plump (1998): Termination of Graph Rewriting is Undecidable. Fundamenta Informaticae 33(2), pp.
201–209, doi:10.3233/FI-1998-33204.

[15] G. Rozenberg, editor (1997): Handbook of Graph Grammars and Computing by Graph Transformations,
Volume 1: Foundations. World Scientific.

[16] L. Tesnière (1959): Eléments de syntaxe structurale. Librairie C. Klincksieck, Paris.

R. Echahed and D. Plump (Eds.): 7th International Workshop on
Computing with Terms and Graphs
EPTCS 110, 2013, pp. 17–28, doi:10.4204/EPTCS.110.4

c© P. Bahr
This work is licensed under the
Creative Commons Attribution License.

Convergence in Infinitary Term Graph Rewriting Systems is
Simple (Extended Abstract)∗

Patrick Bahr
Department of Computer Science, University of Copenhagen

Universitetsparken 5, 2100 Copenhagen, Denmark
paba@diku.dk

In this extended abstract, we present a simple approach to convergence on term graphs that allows
us to unify term graph rewriting and infinitary term rewriting. This approach is based on a partial
order and a metric on term graphs. These structures arise as straightforward generalisations of the
corresponding structures used in infinitary term rewriting. We compare our simple approach to a
more complicated approach that we developed earlier and show that this new approach is superior
in many ways. The only unfavourable property that we were able to identify, viz. failure of full
correspondence between weak metric and partial order convergence, is rectified by adopting a strong
convergence discipline.

1 Introduction

In infinitary term rewriting [17] we study infinite terms and infinite rewrite sequences. Typically, this
extension to infinite structures is formalised by an ultrametric on terms, which yields infinite terms by
metric completion and provides a notion of convergence to give meaning to infinite rewrite sequences.
In this paper we extend infinitary term rewriting to term graphs. In addition to the metric approach, we
also consider the partial order approach to infinitary term rewriting [4] and generalise it to the setting of
term graphs.

One of the motivations for studying infinitary term rewriting is its relation to non-strict evaluation,
which is used in programming languages such as Haskell [18]. Non-strict evaluation defers the evalu-
ation of an expression until it is “needed” and thereby allows us to deal with conceptually infinite data
structures and computations. For example, the function from defined below constructs for each number
n the infinite list of consecutive numbers starting from n:

from(n) = n :: from(s(n))

This construction is only conceptual and only results in a terminating computation if it is used in a context
where only finitely many elements of the list are “needed”. Infinitary term rewriting provides us with an
explicit limit construction to witness the outcome of an infinite computation as it is, for example, induced
by from. After translating the above function definition to a term rewrite rule from(x)→ x :: from(s(x)),
we may derive an infinite rewrite sequence

from(0)→ 0:: from(s(0))→ 0::s(0) :: from(s(s(0)))→ . . .

which converges to the infinite term 0::s(0) ::s(s(0)) :: . . . , which represents the infinite list of numbers
0,1,2, . . . – as intuitively expected.

∗The full version of this paper will appear in Mathematical Structures in Computer Science [7].

18 Convergence in Infinitary Term Graph Rewriting Systems is Simple (Extended Abstract)

Non-strict evaluation is rarely found in isolation, though. Usually, it is implemented as lazy evalu-
ation [14], which complements a non-strict evaluation strategy with sharing. The latter avoids duplic-
ation of subexpressions by using pointers instead of copying. For example, the function from above
duplicates its argument n – it occurs twice on the right-hand side of the defining equation. A lazy evalu-
ator simulates this duplication by inserting two pointers pointing to the actual argument.

While infinitary term rewriting is used to model the non-strictness of lazy evaluation, term graph
rewriting models the sharing part of it. By endowing term graph rewriting with a notion of convergence
like in infinitary term rewriting, we aim to unify the two formalisms into one calculus, thus allowing us
to model both aspects within the same calculus.

Contributions & Outline At first we recall the basic notions of infinitary term rewriting (Section 2).
Afterwards, we construct a metric and a partial order on term graphs and show that both are suitable
as a basis for notions of convergence in term graph rewriting (Section 3). Based on these structures we
introduce notions of convergence (weak and strong variants) for term graph rewriting and show corres-
pondences between metric-based and partial order-based convergence (Section 4.1 and 4.2). We then
present soundness and completeness properties of the resulting infinitary term graph rewriting calculi
w.r.t. infinitary term rewriting (Section 4.3). Lastly, we compare our calculi with previous approaches
(Section 5).

2 Infinitary Term Rewriting

Before starting with the development of infinitary term graph rewriting, we recall the basic notions of
infinitary term rewriting. Rewrite sequences in infinitary rewriting, also called reductions, are sequences
of the form (φι)ι<α , where each φι is a rewrite step from a term tι to tι+1 in a term rewriting system
(TRS) R, denoted φι : tι →R tι+1. The length α of such a sequence can be an arbitrary ordinal. For
example, the infinite reduction indicated in Section 1 is the sequence (φ f

i : tf
i →Rf tf

i+1)i<ω , where tf
i =

0:: . . . ::si−1(0) :: from(si(0)) for all i < ω and Rf is the TRS consisting of the single rule from(x)→
x :: from(s(x)).

2.1 Metric Convergence

The above definition of reductions ensures that consecutive rewrite steps are “compatible”, i.e. the result
term of the ι-th step, viz. tι+1, is the start term of the (ι + 1)-st step. However, this definition does not
relate the start terms of steps at limit ordinal positions to the terms that preceded it. For example, we
can extend the abovementioned reduction (φ f

i)i<ω of length ω , to a reduction (φ f
i)i<ω+1 of length ω +1

using any reduction step φ f
ω , e.g. φ f

ω : from(0)→ 0:: from(s(0)). In our informal notation this reduction
(φ f

i)i<ω+1 reads as follows:

from(0)→ 0:: from(s(0))→ 0::s(0) :: from(s(s(0)))→ . . . from(0)→ 0:: from(s(0))

Intuitively, this does not make sense since the sequence of terms that precedes the last step intuitively
converge to the term 0::s(0) ::s(s(0)) :: . . . , but not from(0).

In infinitary term rewriting such reductions are ruled out by a notion of convergence and a notion of
continuity that follows from it. Typically, this notion of convergence is derived from a metric d on the
set of (finite and infinite) terms T ∞(Σ): d(s, t) = 0 if s = t, and d(s, t) = 2−d otherwise, where d is the

P. Bahr 19

minimal depth at which s and t differ. Using this metric, we may also construct the set of (finite and
infinite) terms T ∞(Σ) by metric completion of the metric space (T (Σ),d) of finite terms.

The mode of convergence in the metric space (T ∞(Σ),d) is the basis for the notion of weak m-
convergence of reductions: a reduction S = (φι : tι →R tι+1)ι<α is weakly m-continuous if limι→λ tι = tλ
for all limit ordinals λ < α; it weakly m-converges to a term t, denoted S : t0 ↪→m R t, if it is weakly m-
continuous and limι→α̂ tι = t, where α̂ is the length of the underlying sequence of terms (tι)ι<α̂ . For
example, the reduction (φ f

i)i<ω weakly m-converges to the term 0::s(0) ::s(s(0)) :: . . . ; but the sequence
(φ f

i)i<ω+1 does not weakly m-converge, it is not even weakly m-continuous as limι→ω tf
ι is not from(0).

Weak m-convergence is quite a general notion of convergence. For example, given a rewrite rule
a→ a, we may derive the reduction a→ a→ . . . , which weakly m-converges to a even though the rule
a→ a is applied again and again at the same position. This generality causes many desired properties to
break, such as unique normal form properties and compression [16]. That is why Kennaway et al. [16]
introduced strong m-convergence, which in addition requires that the depth at which rewrite steps take
place tends to infinity as one approaches a limit ordinal: Let S = (φι : tι →πι tι+1)ι<α be a reduction,
where each πι indicates the position at which the step φι takes place and |πι | denotes the length of the
position πι . The reduction S is said to be strongly m-continuous (resp. strongly m-converge to t, denoted
S : t0 �m t) if it is weakly m-continuous (resp. weakly m-converges to t) and if (|πι |)ι<λ tends to infinity
for all limit ordinals λ < α (resp. λ ≤ α). For example, the reduction (φ f

i)i<ω also strongly m-converges
to the term 0::s(0) ::s(s(0)) :: On the other hand, the reduction a→ a→ . . . indicated above weakly
m-converges to a, but it does not strongly m-converge to a.

2.2 Partial Order Convergence

Alternatively to the metric approach illustrated in Section 2.1, convergence can also be formalised using
a partial order ≤⊥ on terms. The idea to use this partial order for infinitary rewriting goes back to
Corradini [12]. The signature Σ is extended to the signature Σ⊥ by adding a fresh constant symbol ⊥.
When dealing with terms in T ∞(Σ⊥), we call terms that do not contain the symbol ⊥, i.e. terms that
are contained in T ∞(Σ), total. We define s≤⊥ t iff s can be obtained from t by replacing some subterm
occurrences in t by⊥. Interpreting the term⊥ as denoting “undefined”,≤⊥ can be read as “is less defined
than”. The pair (T ∞(Σ⊥),≤⊥) is known to form a complete semilattice [13], i.e. it has a least element
⊥, each directed set D in (T ∞(Σ⊥),≤⊥) has a least upper bound (lub)

⊔
D, and every non-empty set B

in (T ∞(Σ⊥),≤⊥) has greatest lower bound (glb)
d

B. In particular, this means that for any sequence
(tι)ι<α in (T ∞(Σ⊥),≤⊥), its limit inferior, defined by liminfι→α tι =

⊔
β<α

(d
β≤ι<α tι

)
, exists.

In the same way that the limit in the metric space gives rise to weak m-continuity/-convergence, the
limit inferior gives rise to weak p-continuity and weak p-convergence; simply replace lim by liminf. We
write S : t0 ↪→p t if a reduction S starting with term t0 weakly p-converges to t. The defining difference
between the two approaches is that p-continuous reductions always p-converge. The reason for that lies
in the complete semilattice structure of (T ∞(Σ⊥),≤⊥), which guarantees that the limit inferior always
exists (in contrast to the limit in a metric space).

The definition of the strong variant of p-convergence is a bit different from the one of m-convergence,
but it follows the same idea: a reduction (φi : ti→πi ti+1)i<ω weakly m-converges iff the minimal depth
di at which two consecutive terms ti, ti+1 differ tends to infinity. The strong variant of m-convergence is
a conservative approximation of this condition; it requires |πi| to tend to infinity. This approximation is
conservative since |πi| ≤ di; differences between consecutive terms can only occur below the position at
which a rewrite rule was applied.

20 Convergence in Infinitary Term Graph Rewriting Systems is Simple (Extended Abstract)

In the partial order approach we can make this approximation more precise since we have the whole
term structure at our disposal instead of only the measure provided by the metric d. In the case of
m-convergence, we replaced the actual depth of a minimal difference di with its conservative under-
approximation |πi|. For p-convergence, we replace the glb ti u ti+1, which intuitively represents the
common information shared by ti and ti+1, with the conservative under-approximation ti[⊥]πi , which
replaces the redex at position πi in ti with ⊥. This term ti[⊥]πi – called the reduction context of the
step φi : ti→ ti+1 – is a lower bound of ti and ti+1 w.r.t. ≤⊥ and is, thus, also smaller than tiu ti+1. The
definition of strong p-convergence is obtained from the definition of weak p-convergence by replacing
liminfι→λ tι with liminfι→λ tι [⊥]πι .

A reduction S = (φι : tι →πι tι+1)ι<α is called strongly p-continuous if liminfι→λ ti[⊥]πi = tλ for all
limit ordinals λ < α; it strongly p-converges to t, denoted S : t0 �p t, if it is strongly p-continuous and
either liminfι→α ti[⊥]πi = t in case α is a limit ordinal, or t = tα+1 otherwise.

Example 2.1. The previously mentioned reduction (φ f
i)i<ω both strongly and weakly p-converges to

the infinite term 0::s(0) ::s(s(0)) :: . . . – like in the metric approach. However, while the reduction
a→ a→ . . . does not strongly m-converge, it strongly p-converges to the term ⊥.

The partial order approach has some advantages over the metric approach. As explained above, every
p-continuous reduction is also p-convergent. Moreover, strong p-convergence has some properties such
as infinitary normalisation and infinitary confluence of orthogonal systems [4] that are not enjoyed by
strong m-convergence.

Interestingly, however, the partial order-based notions of convergence are merely conservative exten-
sions of the metric-based ones:

Theorem 2.1 ([2, 4]). For every reduction S in a TRS, the following equivalences hold:

(i) S : s ↪→m t iff S : s ↪→p t in T ∞(Σ). (ii) S : s �m t iff S : s �p t in T ∞(Σ).

The phrase “in T ∞(Σ)” means that all terms in S are total (including t). That is, if restricted to total
terms, m- and p-convergence coincide.

3 Graphs and Term Graphs

In this section, we present our notion of term graphs and generalise the metric d and the partial order≤⊥
from terms to term graphs.

Our notion of graphs and term graphs is largely taken from Barendregt et al. [8].

Definition 3.1 (graphs). A graph over signature Σ is a triple g = (N, lab,suc) consisting of a set N (of
nodes), a labelling function lab : N → Σ, and a successor function suc : N → N∗ such that |suc(n)| =
ar(lab(n)) for each node n ∈ N, i.e. a node labelled with a k-ary symbol has precisely k successors. If
suc(n) = 〈n0, . . . ,nk−1〉, then we write suci(n) for ni.

The successor function suc defines, for each node n, directed edges from n to suci(n). A path from a
node m to a node n is a finite sequence 〈e0, . . . ,el〉 of numbers such that n = sucel (. . .suce0(m)), i.e. n is
reached from m by taking the e0-th edge, then the e1-th edge etc.

Definition 3.2 (term graphs). A term graph g over Σ is a tuple (N, lab,suc,r) consisting of an underlying
graph (N, lab,suc) over Σ whose nodes are all reachable from the root node r ∈ N. The class of all term
graphs over Σ is denoted G ∞(Σ). A position of n ∈ N in g is a path in the underlying graph of g from
r to n. The set of all positions of n in g is denoted Pg(n). The depth of n in g, denoted depthg(n), is
the minimum of the lengths of the positions of n in g, i.e. depthg(n) = min{|π| |π ∈Pg(n)}. The term

P. Bahr 21

graph g is called a term tree if each node in g has exactly one position. We use the notation Ng, labg,
sucg and rg to refer to the respective components N,lab, suc and r of g. Given a graph or a term graph h
and a node n in h, we write h|n to denote the sub-term graph of h rooted in n.

The notion of homomorphisms is crucial for dealing with term graphs. For greater flexibility, we
will parametrise this notion by a set of constant symbols ∆ for which the homomorphism condition is
suspended. This will allow us to deal with variables and partiality appropriately.

Definition 3.3 (∆-homomorphisms). Let Σ be a signature, ∆⊆Σ(0), and g,h∈G ∞(Σ). A ∆-homomorphism
φ from g to h, denoted φ : g→∆ h, is a function φ : Ng→ Nh with φ(rg) = rh that satisfies the following
equations for all for all n ∈ Ng with labg(n) 6∈ ∆:

labg(n) = labh(φ(n)) (labelling)

φ(sucg
i (n)) = such

i (φ(n)) for all 0≤ i < ar(labg(n)) (successor)

Note that, for ∆ = /0, we get the usual notion of homomorphisms on term graphs (e.g. Barendsen [9])
and from that the notion of isomorphisms. The nodes labelled with symbols in ∆ can be thought of as
holes in the term graphs that can be filled with other term graphs.

We do not want to distinguish between isomorphic term graphs. Therefore, we use a well-known
trick [19] to obtain canonical representatives of isomorphism classes of term graphs.

Definition 3.4. A term graph g is called canonical if n = Pg(n) holds for each n ∈ Ng. That is, each
node is the set of its positions in the term graph. The set of all (finite) canonical term graphs over Σ
is denoted G ∞

C (Σ) (resp. GC (Σ)). For each term graph h ∈ G ∞
C (Σ), its canonical representative C (h) is

obtained from h by replacing each node n in h by Ph(n).

This construction indeed yields a canonical representation of isomorphism classes. More precisely:
g∼= C (g) for all g ∈ G ∞(Σ), and g∼= h iff C (g) = C (h) for all g,h ∈ G ∞(Σ).

We consider the set of terms T ∞(Σ) as the subset of canonical term trees of G ∞
C (Σ). With this

correspondence in mind, we can define the unravelling of a term graph g as the unique term U (g) such
that there is a homomorphism φ : U (g)→ g. For example, g0 from Figure 1 is the unravelling of g1,
and h0 and gω from Figure 2 both unravel to the infinite term @(f ,@(f , . . .)). Term graphs that unravel
to the same term are called bisimilar.

3.1 A Simple Partial Order on Term Graphs

In this section, we want to establish a partial order suitable for formalising convergence of sequences of
canonical term graphs similarly to weak p-convergence on terms.

Weak p-convergence on term rewriting systems is based on the partial order ≤⊥ on T ∞(Σ⊥), which
instantiates occurrences of ⊥ from left to right, i.e. s≤⊥ t iff t is obtained by replacing occurrences of ⊥
in s by arbitrary terms in T ∞(Σ⊥). Analogously, we consider the class of partial term graphs simply as
term graphs over the signature Σ⊥ = Σ]{⊥}. In order to generalise the partial order ≤⊥ to term graphs,
we need to formalise the instantiation of occurrences of ⊥ in term graphs. For this purpose, we shall
use ∆-homomorphisms with ∆ = {⊥}, or⊥-homomorphisms for short. A⊥-homomorphism φ : g→⊥ h
maps each node in g to a node in h while “preserving its structure”. Except for nodes labelled ⊥ this
also includes preserving the labelling. This exception to the homomorphism condition allows the ⊥-
homomorphism φ to instantiate each⊥-node in g with an arbitrary node in h. Using⊥-homomorphisms,
we arrive at the following definition for our simple partial order ≤S

⊥ on term graphs:

Definition 3.5. For each g,h ∈ G ∞
C (Σ⊥), define g≤S

⊥ h iff there is some φ : g→⊥ h.

22 Convergence in Infinitary Term Graph Rewriting Systems is Simple (Extended Abstract)

One can verify that ≤S
⊥ indeed generalises the partial order ≤⊥ on terms. Considering terms as

canonical term trees, we obtain the following characterisation of ≤⊥ on terms s, t ∈T ∞(Σ⊥):

s≤⊥ t ⇐⇒ there is a ⊥-homomorphism φ : s→⊥ t.

The first important result for ≤S
⊥ is that the semilattice structure that we already had for ≤⊥ is

preserved by this generalisation:

Theorem 3.1. The partially ordered set (G ∞
C (Σ⊥),≤S

⊥) forms a complete semilattice.

For terms, we already know that the set of (potentially infinite) terms can be constructed by forming
the ideal completion of the partially ordered set (T (Σ⊥),≤⊥) of finite terms [11]. More precisely, the
ideal completion of (T (Σ⊥),≤⊥) is order isomorphic to (T ∞(Σ⊥),≤⊥).

An analogous result can be shown for term graphs:

Theorem 3.2. The ideal completion of (GC (Σ⊥),≤S
⊥) is order isomorphic to (G ∞

C (Σ⊥),≤S
⊥).

3.2 A Simple Metric on Term Graphs

Next, we shall generalise the metric d from terms to term graphs. To achieve this, we need to formalise
what it means for two term graphs to coincide up to a certain depth, so that we can reformulate the defin-
ition of the metric d for term graphs. To this end, we follow the same idea that the original definition of
d on terms from Arnold and Nivat [1] was based on. In particular, we introduce a truncation construction
that cuts off nodes below a certain depth:

Definition 3.6. Let g∈ G ∞(Σ⊥) and d ≤ω . The simple truncation g†d of g at d is the term graph defined
as follows:

Ng†d =
{

n ∈ Ng
∣∣depthg(n)≤ d

}
rg†d = rg

labg†d(n) =

{
labg(n) if depthg(n)< d
⊥ if depthg(n) = d

sucg†d(n) =

{
sucg(n) if depthg(n)< d
〈〉 if depthg(n) = d

The definition of the simple metric d† follows straightforwardly:

Definition 3.7. The simple distance d† : G ∞
C (Σ)×G ∞

C (Σ)→ R+
0 is defined as follows:

d†(g,h) =

{
0 if g = h
2−d if g 6= h and d = max{e < ω |g†e∼= h†e}

Again, we can verify that d† generalises d. In particular, we can show that our notion of truncation
coincides with that of Arnold and Nivat [1] if restricted to terms.

As desired, this generalisation retains the complete ultrametric space structure:

Theorem 3.3. The pair (G ∞
C (Σ),d†) forms a complete ultrametric space.

The metric space analogue to ideal completion is metric completion. On terms, we already know that
we can construct the set of (potentially infinite) terms T ∞(Σ) by metric completion of the metric space
(T (Σ),d) of finite terms [10]. More precisely, the metric completion of (T (Σ),d) is the metric space
(T ∞(Σ),d). This property generalises to term graphs as well:

Theorem 3.4. The metric completion of (GC (Σ),d†) is the metric space (G ∞
C (Σ),d†).

P. Bahr 23

f

c c

f

c

f

c c

f

c

f

c c
(g0) (g1) (g2) (g4) (gω)

Figure 1: Limit inferior in the presence of acyclic sharing.

@l

Y x

@r

@

Y
(ρ1)

@l

Y x

@r

(ρ2)

(a) Term graph rules that unravel to Y x→ x(Y x).

@

Y f

(g0)

@

f

(h0)

ρ2

(b) A single ρ2-step.

@

Y f

(g0)

@

f @

Y

(g1)

@

f @

@

Y
(g2)

@

f @

@

(gω)

ρ1 ρ1 ρ1

(c) A strongly m-convergent term graph reduction over ρ1.

Figure 2: Implementation of the fixed point combinator as a term graph rewrite rule.

4 Infinitary Term Graph Rewriting

In this paper, we adopt the term graph rewriting framework of Barendregt et al. [8]. In order to represent
placeholders in rewrite rules, we use variables – in a manner much similar to term rewrite rules. To this
end, we consider a signature ΣV = Σ]V that extends the signature Σ with a set V of nullary variable
symbols.

Definition 4.1 (term graph rewriting systems). Given a signature Σ, a term graph rule ρ over Σ is a
triple (g, l,r) where g is a graph over ΣV and l,r ∈ Ng such that all nodes in g are reachable from l or
r. We write ρl resp. ρr to denote the left- resp. right-hand side of ρ , i.e. the term graph g|l resp. g|r.
Additionally, we require that for each variable v ∈ V there is at most one node n in g labelled v, and we
have that n 6= l and that n is reachable from l in g. A term graph rewriting system (GRS) R is a pair
(Σ,R) with Σ a signature and R a set of term graph rules over Σ.

The notion of unravelling straightforwardly extends to term graph rules: the unravelling of a term
graph rule ρ , denoted U (ρ), is the term rule U (ρl)→U (ρr). The unravelling of a GRS R = (Σ,R),
denoted U (R), is the TRS (Σ,{U (ρ) |ρ ∈ R}).
Example 4.1. Figure 2a shows two term graph rules which both unravel to the term rule ρ : @(Y,x)→
@(x,@(Y,x)) that defines the fixed point combinator Y . Note that sharing of nodes is used both to refer
to variables in the left-hand side from the right-hand side and in order to simulate duplication.

24 Convergence in Infinitary Term Graph Rewriting Systems is Simple (Extended Abstract)

Without going into all details of the construction, we describe the application of a rewrite rule ρ
with root nodes l and r to a term graph g in four steps: at first a suitable sub-term graph of g rooted
in some node n of g is matched against the left-hand side of ρ . This matching amounts to finding a
V -homomorphism φ from the left-hand side ρl to g|n, the redex. The V -homomorphism φ allows us to
instantiate variables in the rule with sub-term graphs of the redex. In the second step, nodes and edges
in ρ that are not in ρl are copied into g, such that each edge pointing to a node m in ρl is redirected to
φ(m). In the next step, all edges pointing to the root n of the redex are redirected to the root n′ of the
contractum, which is either r or φ(r), depending on whether r has been copied into g or not (because it
is reachable from l in ρ). Finally, all nodes not reachable from the root of (the now modified version of)
g are removed. With h the result of the above construction, we obtain a pre-reduction step ψ : g 7→n h
from g to h.

The definition of term graph rewriting in the form of pre-reduction steps is very operational. While
this style is beneficial for implementing a rewriting system, it is problematic for reasoning on term
graphs modulo isomorphism, which is necessary for introducing notions of convergence. However, one
can easily see that the construction of the result term graph of a pre-reduction step is invariant under
isomorphism, which justifies the following definition of reduction steps:

Definition 4.2. Let R = (Σ,R) be GRS, ρ ∈ R and g,h ∈ G ∞
C (Σ) with n ∈ Ng and m ∈ Nh. A tuple

φ = (g,n,h) is called a reduction step, written φ : g→n h, if there is a pre-reduction step φ ′ : g′ 7→n′ h′

with C (g′) = g, C (h′) = h, and n = Pg′(n′). We also write φ : g→R h to indicate R.

In other words, a reduction step is a canonicalised pre-reduction step. Figure 2b and Figure 2c
illustrate some (pre-)reduction steps induced by the rules ρ1 respectively ρ2 shown in Figure 2a.

4.1 Weak Convergence

In analogy to infinitary term rewriting, we employ the partial order ≤S
⊥ and the metric d† for the purpose

of defining convergence of transfinite term graph reductions.

Definition 4.3. Let R = (Σ,R) be a GRS.

(i) Let S = (gι →R gι+1)ι<α be a reduction in R. S is weakly m-continuous in R if limι→λ gι = gλ
for each limit ordinal λ < α . S weakly m-converges to g ∈ G ∞

C (Σ) in R, written S : g0 ↪→m R g, if it
is weakly m-continuous and limι→α̂ gι = g.

(ii) Let R⊥ be the GRS (Σ⊥,R) over the extended signature Σ⊥ and S = (gι →R⊥ gι+1)ι<α a reduction
in R⊥. S is weakly p-continuous in R if liminfι<λ gi = gλ for each limit ordinal λ < α . S
weakly p-converges to g ∈ G ∞

C (Σ⊥) in R, written S : g0 ↪→p R g, if it is weakly p-continuous and
liminfι<α̂ gi = g.

Example 4.2. Figure 2c illustrates an infinite reduction derived from the rule ρ1 in Figure 2a. Since
gi†(i+ 1) ∼= gω†(i+ 1) for all i < ω , we have that limi→ω gi = gω , which means that the reduction
weakly m-converges to the term graph gω . Moreover, since each node in gω eventually appears in a term
graph in (gi)i<ω and remains stable afterwards, we have liminfi→ω gι = gω . Consequently, the reduction
also weakly p-converges to gω .

Recall that weak p-convergence for TRSs is a conservative extension of weak m-convergence (cf.
Theorem 2.1). The key property that makes this possible is that for each sequence (tι)ι<α in T ∞(Σ),
we have that limι→α tι = liminfι→α tι whenever (tι)ι<α converges, or liminfι→α tι is a total term. Sadly,
this is not the case for the metric space and the partial order on term graphs: the sequence of term graphs
depicted in Figure 1 has a total term graph as its limit inferior, viz. gω , although it does not converge in

P. Bahr 25

the metric space. In fact, since the sequence in Figure 1 alternates between two distinct term graphs, it
does not converge in any Hausdorff space, i.e. in particular, it does not converge in any metric space.

This example shows that we cannot hope to generalise the compatibility property that we have for
terms: even if a sequence of total term graphs has a total term graph as its limit inferior, it might not
converge. However, the converse direction of the correspondence does hold true:

Theorem 4.1. If (gι)ι<α converges, then limι→α gι = liminfι→α gι .

From this property, we obtain the following relation between weak m- and p-convergence:

Theorem 4.2. Let S be a reduction in a GRS R. If S : g ↪→m R h then S : g ↪→p R h.

As indicated above, weak m-convergence is not the total fragment of weak p-convergence as it is the
case for TRSs, i.e. the converse of the above implication does not hold in general:

Example 4.3. There is a GRS that yields the reduction shown in Figure 1, which weakly p-converges
to gω but is not weakly m-convergent. This reduction can be produced by alternately applying the rules
ρ1,ρ2, where the left hand side of both rules and the right-hand side of ρ1 is g0, and the right-hand side
of ρ2 is g1.

4.2 Strong Convergence

The idea of strong convergence is to conservatively approximate the convergence behaviour somewhat
independently from the actual rewrite rules that are applied. Strong m-convergence in TRSs requires
that the depth of the redexes tends to infinity thereby assuming that anything at the depth of the redex
or below is potentially affected by a reduction step. Strong p-convergence, on the other hand, uses a
better approximation that only assumes that the redex is affected by a reduction step – not however other
subterms at the same depth. To this end strong p-convergence uses a notion of reduction contexts –
essentially the term minus the redex – for the formation of limits. The following definition provides the
construction for the notion of reduction contexts that we shall use for term graph rewriting:

Definition 4.4. Let g ∈ G ∞(Σ⊥) and n ∈ Ng. The local truncation of g at n, denoted g\n, is obtained
from g by labelling n with ⊥ and removing all outgoing edges from n as well as all nodes that thus
become unreachable from the root.

Proposition 4.1. Given a reduction step g→n h, we have g\n≤S
⊥ g,h.

This means that the local truncation at the root of the redex is preserved by reduction steps and is
therefore an adequate notion of reduction context for strong p-convergence [3]. Using this construction
we can define strong p-convergence on term graphs analogously to strong p-convergence on terms. For
strong m-convergence, we simply take the same notion of depth that we already used for the definition
of the simple truncation g†d and thus the simple metric d†.

Definition 4.5. Let R = (Σ,R) be a GRS.

(i) The reduction context c of a graph reduction step φ : g→n h is the term graph C (g\n). We write
φ : g→c h to indicate the reduction context of a graph reduction step.

(ii) Let S = (gι →nι gι+1)ι<α be a reduction in R. S is strongly m-continuous in R if limι→λ gι = gλ
and (depthgι (nι))ι<λ tends to infinity for each limit ordinal λ < α . S strongly m-converges to g
in R, denoted S : g0 �m R g, if it is strongly m-continuous and either S is closed with g = gα or S is
open with g = limι→α gι and (depthgι (nι))ι<α tending to infinity.

26 Convergence in Infinitary Term Graph Rewriting Systems is Simple (Extended Abstract)

(iii) Let S = (gι →cι gι+1)ι<α be a reduction in R⊥ = (Σ⊥,R). S is strongly p-continuous in R if
liminfι→λ cι = gλ for each limit ordinal λ < α . S strongly p-converges to g in R, denoted
S : g0 �p R g, if it is strongly p-continuous and either S is closed with g = gα or S is open with
g = liminfι→α cι .

Example 4.4. As explained in Example 4.2, the reduction in Figure 2c both weakly m- and p-converges
to gω . Because contraction takes place at increasingly large depth, the reduction also strongly m-
converges to gω . Moreover, since each node in gω eventually appears also in the sequence of reduc-
tion contexts (ci)i<ω of the reduction and remains stable afterwards, we have that liminfi→ω ci = gω .
Consequently, the reduction also strongly p-converges to gω .

Remarkably, one of the advantages of the strong variant of convergence is that we regain the corres-
pondence between m- and p-convergence that we know from infinitary term rewriting:

Theorem 4.3 ([5]). Let R be a GRS and S a reduction in R⊥. We then have that

S : g �m R h iff S : g �p R h in G ∞
C (Σ).

In particular, the GRS given in Example 4.3 that induces the reduction depicted in Figure 1 does not
provide a counterexample for the “if” direction of the above equivalence – in contrast to weak conver-
gence. The reduction in Figure 1 does not strongly m-converge but it does strongly p-converge to the
term graph ⊥, which is in accordance with Theorem 4.3 above.

4.3 Soundness and Completeness

In order to assess the value of the modes of convergence on term graphs that we introduced in this paper,
we need to compare them to the well-established counterparts on terms. Ideally, we would like to see
a strong connection between converging reductions in a GRS R and converging reductions in the TRS
U (R) in the form of soundness and completeness properties. For example, for m-convergence we want
to see that g ↪→m R h implies U (g) ↪→m U (R) U (h) – i.e. soundness – and vice versa that U (g) ↪→m U (R) t
implies g ↪→m R h with U (h) = t – i.e. completeness.

Completeness is already an issue for finitary rewriting [15]: a single term graph redex may corres-
pond to several term redexes due to sharing. Hence, contracting a term graph redex may correspond to
several term rewriting steps, which may be performed independently.

In the context of weak convergence, also soundness becomes an issue. The underlying reason for
this issue is similar to the phenomenon explained above: a single term graph rewrite step may repres-
ent several term rewriting steps, i.e. g→R h implies U (g)→+

U (R) U (h).1 When we have a conver-
ging term graph reduction (φι : gι → gι+1)ι<α , we know that the underlying sequence of term graphs
(gι)ι<α̂ converges. However, the corresponding term reduction does not necessarily produce the se-
quence (U (gι))ι<α̂ but may intersperse the sequence (U (gι))ι<α̂ with additional intermediate terms,
which might change the convergence behaviour.

While we cannot prove soundness for weak convergence due to the abovementioned problems, we
can show that the underlying modes of convergence are sound in the sense that convergence is preserved
under unravelling.

Theorem 4.4.

(i) limι→α gι = g implies limι→α U (gι) = U (g) for every sequence (gι)ι<α in (G ∞
C (Σ),d†).

(ii) U (liminfι→α gι) = liminfι→α U (gι) for every sequence (gι)ι<α in (G ∞
C (Σ⊥),≤S

⊥).

1If the term graph g is cyclic, the corresponding term reduction may even be infinite.

P. Bahr 27

Note that the above theorem in fact implies soundness of the modes of convergence on term graphs
with the modes of convergence on terms since both d† and≤S

⊥ specialise to d respectively≤⊥ if restricted
to term trees.

However, we can observe that strong convergence is more well-behaved than weak convergence. It
is possible to prove soundness and completeness properties for strong p-convergence:

Theorem 4.5 ([5]). Let R be a left-finite GRS.

(i) If R is left-linear and g �p R h, then U (g)�p U (R) U (h).

(ii) If R is orthogonal and U (g)�p U (R) t, then there are reductions g �p R h and t �p U (R) U (h).

Note that the above completeness property is not the one that one would initially expect, namely
U (g) �p U (R) t implies g �p R h with U (h) = t. But this general completeness property is known to
already fail for finitary term graph rewriting [15].

The soundness and completeness properties above have an important practical implication: GRSs
that only differ in their sharing, i.e. they unravel to the same TRS, will produce the same results, i.e. the
same normal forms up to bisimilarity. GRSs with more sharing may, however, reach a result with fewer
steps. This can be observed in Figure 2, which depicts two rules ρ1,ρ2 that unravel to the same term rule.
Rule ρ1 reaches gω in ω steps whereas ρ2 reaches a term graph h0, which is bisimilar to gω , in one step.

The situation for strong m-convergence is not the same as for strong p-convergence. While we do
have soundness under the same preconditions, i.e. g�m R h implies U (g)�m U (R) U (h), the completeness
property we have seen in Theorem 4.5 fails. This behaviour was already recognised by Kennaway et
al. [15]. Nevertheless, we can find a weaker form of completeness that is restricted to normalising
reductions:

Theorem 4.6 ([5]). Given an orthogonal, left-finite GRS R that is normalising w.r.t. strongly m-converging
reductions, we find for each normalising reduction U (g) �m U (R) t a reduction g �m R h such that t =
U (h).

5 Concluding Remarks

We have devised two independently defined but closely related infinitary calculi of term graph rewriting.
This is not the first proposal for infinitary term graph rewriting calculi; in previous work [6] we presented
a so-called rigid approach based on a metric and a partial order different from the structures presented
here.

There are several arguments why the simple approach presented in this paper is superior to the rigid
approach. First of all it is simpler. The rigid metric and partial order have been carefully crafted in order
to obtain a correspondence result in the style of Theorem 2.1 for weak convergence on term graphs.
This correspondence result of the rigid approach is not fully matched by the simple approach that we
presented here, but we do regain the full correspondence by moving to strong convergence.

Secondly, the rigid approach is very restrictive, disallowing many reductions that are intuitively con-
vergent. For example, in the rigid approach the reduction depicted in Figure 2c, would not p-converge
(weakly or strongly) to the term graph gω as intuitively expected but instead to the term graph obtained
from gω by replacing f with ⊥. Moreover, this sequence would not m-converge (weakly or strongly) at
all.

Lastly, as a consequence of the restrictive nature of the rigid approach, the completion constructions
of the underlying metric and partial order do not yield the full set of term graphs – in contrast to our
findings here in Theorem 3.2 and 3.4.

28 Convergence in Infinitary Term Graph Rewriting Systems is Simple (Extended Abstract)

Unfortunately, we do not have solid soundness or completeness results for weak convergence apart
from the preservation of convergence under unravelling and the metric/ideal completion construction of
the set of term graphs. However, as we have shown, this shortcoming is again addressed by moving to
strong convergence.

References
[1] A. Arnold & M. Nivat (1980): The metric space of infinite trees. Algebraic and topological properties.

Fundam. Inf. 3(4), pp. 445–476.

[2] P. Bahr (2009): Infinitary Rewriting - Theory and Applications. Master’s thesis, Vienna University of Tech-
nology, Vienna.

[3] P. Bahr (2010): Abstract Models of Transfinite Reductions. In C. Lynch, editor: RTA’10, 6, pp. 49–66,
doi:10.4230/LIPIcs.RTA.2010.49.

[4] P. Bahr (2010): Partial Order Infinitary Term Rewriting and Böhm Trees. In C. Lynch, editor: RTA’10, 6, pp.
67–84, doi:10.4230/LIPIcs.RTA.2010.67.

[5] P. Bahr (2012): Infinitary Term Graph Rewriting is Simple, Sound and Complete. In A. Tiwari, editor:
RTA’12, 15, pp. 69–84, doi:10.4230/LIPIcs.RTA.2012.69.

[6] P. Bahr (2012): Modes of Convergence for Term Graph Rewriting. Logical Methods in Computer Science
8(2):6, doi:10.2168/LMCS-8(2:6)2012.

[7] P. Bahr (2013): Convergence in Infinitary Term Graph Rewriting Systems is Simple. Math. Struct. in Comp.
Science, to appear.

[8] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, R. Kennaway, M.J. Plasmeijer & M.R. Sleep (1987):
Term graph rewriting. In Philip C. Treleaven Jaco de Bakker, A. J. Nijman, editor: PARLE’87, LNCS 259,
Springer, pp. 141–158, doi:10.1007/3-540-17945-3 8.

[9] E. Barendsen (2003): Term Graph Rewriting. In Terese, editor: Term Rewriting Systems, chapter 13, Cam-
bridge University Press, pp. 712–743.

[10] M. Barr (1993): Terminal coalgebras in well-founded set theory. Theor. Comput. Sci. 114(2), pp. 299 – 315,
doi:10.1016/0304-3975(93)90076-6.

[11] G. Berry & J.-J. Lévy (1977): Minimal and optimal computations of recursive programs. In: POPL’77, pp.
215–226, doi:10.1145/512950.512971.

[12] A. Corradini (1993): Term rewriting in CTΣ. In M.-C. Gaudel & J.-P. Jouannaud, editors: TAPSOFT’93, pp.
468–484, doi:10.1007/3-540-56610-4 83.

[13] J.A. Goguen, J.W. Thatcher, E.G. Wagner & J.B. Wright (1977): Initial Algebra Semantics and Continuous
Algebras. J. ACM 24(1), pp. 68–95, doi:10.1145/321992.321997.

[14] P. Henderson & J.H. Morris, Jr. (1976): A lazy evaluator. In: POPL’76, pp. 95–103,
doi:10.1145/800168.811543.

[15] R. Kennaway, J.W. Klop, M.R. Sleep & F.-J. de Vries (1994): On the adequacy of graph rewriting for simu-
lating term rewriting. ACM Trans. Program. Lang. Syst. 16(3), pp. 493–523, doi:10.1145/177492.177577.

[16] R. Kennaway, J.W. Klop, M.R. Sleep & F.-J. de Vries (1995): Transfinite Reductions in Orthogonal Term
Rewriting Systems. Inf. Comput. 119(1), pp. 18–38, doi:10.1006/inco.1995.1075.

[17] R. Kennaway & F.-J. de Vries (2003): Infinitary Rewriting. In Terese, editor: Term Rewriting Systems, 1st
edition, chapter 12, Cambridge University Press, pp. 668–711.

[18] S. Marlow (2010): Haskell 2010 Language Report.

[19] D. Plump (1999): Term graph rewriting. In H. Ehrig, G. Engels, H.-J. Kreowski & G. Rozenberg, editors:
Handbook of Graph Grammars and Computing by Graph Transformation, 2, World Scientific Publishing Co.,
Inc., pp. 3–61, doi:10.1142/9789812815149 0001.

R. Echahed and D. Plump (Eds.): 7th International Workshop on
Computing with Terms and Graphs
EPTCS 110, 2013, pp. 29–40, doi:10.4204/EPTCS.110.5

c© M. Schmidt-Schauss
This work is licensed under the
Creative Commons Attribution License.

Linear Compressed Pattern Matching for Polynomial
Rewriting (Extended Abstract)

Manfred Schmidt-Schauss
Institut für Informatik,

Fachbereich Informatik und Mathematik,
Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany
schauss@ki.informatik.uni-frankfurt.de

This paper is an extended abstract of an analysis of term rewriting where the terms in the rewrite rules
as well as the term to be rewritten are compressed by a singleton tree grammar (STG). This form of
compression is more general than node sharing or representing terms as dags since also partial trees
(contexts) can be shared in the compression. In the first part efficient but complex algorithms for
detecting applicability of a rewrite rule under STG-compression are constructed and analyzed. The
second part applies these results to term rewriting sequences.

The main result for submatching is that finding a redex of a left-linear rule can be performed in
polynomial time under STG-compression.

The main implications for rewriting and (single-position or parallel) rewriting steps are: (i) un-
der STG-compression, n rewriting steps can be performed in nondeterministic polynomial time. (ii)
under STG-compression and for left-linear rewrite rules a sequence of n rewriting steps can be per-
formed in polynomial time, and (iii) for compressed rewrite rules where the left hand sides are either
DAG-compressed or ground and STG-compressed, and an STG-compressed target term, n rewriting
steps can be performed in polynomial time.

1 Introduction

An important concept in various areas of computer science like automated deduction, first order logic,
term rewriting, type checking, are terms (ranked trees), and also terms containing variables (see e.g. [2]).
The basic and widely used algorithms in these areas are matching, unification, term rewriting, equational
deduction, asf. For example, a term f (g(a,b),c) may be rewritten into f (g(b,a),c) by the commutativity
axiom g(x,y) = g(y,x) for g. Since implemented systems often deal with large terms, perhaps generated
ones, it is of high interest to look for compression mechanisms for terms, and consequently, also inves-
tigate variants of the known algorithms that also perform efficiently on the compressed terms without
prior decompression.
The device of straight line programs (SLP) for compression of strings is a general one and allows anal-
yses of correctness and complexity of algorithms [21, 16]. SLPs are polynomially equivalent to the
LZ77-variant of Lempel-Ziv compression [25]. SLPs are non-cyclic context free grammars (CFGs),
where every nonterminal has exactly one production in the CFG, such that any nonterminal represents
exactly one string. Basic algorithms are the equality check of two compressed strings, which requires
polynomial time [19] (see [15] for an efficient version and [11] for a proposal of a further improvement),
and the compressed pattern match, i.e., given two SLP-compressed strings s, t, the question whether s is
a substring of t can also be solved in polynomial time in the size of the SLPs.
A generalization of SLPs for the compression of terms are singleton tree grammars (STG) [22, 13, 7], a
specialization of straight line context free tree grammars [4, 5, 17, 18], where linear SLCF tree grammars

30 Polynomial Rewriting of Compressed Terms

are polynomially equivalent to STGs [17, 18]. Basic notions for tree grammars and tree automata can be
found in [6]. Besides using the well-known node sharing, also partial subtrees (contexts) can be shared
in the compression. The Plandowski-Lifshits equality test of nonterminals can be generalized to STGs
and requires polynomial time [4, 22] in the size of the STG.
A naive generalization of the pattern match is to find a compressed ground term in another compressed
ground term, which can be solved by translating this problem into a pattern match of compressed preorder
traversals of the terms. A generalization of the pattern match is the following submatching problem (also
called encompassment): given two (STG-compressed) terms s, t, where s may contain variables, is there
an occurrence of an instance of s in t? A special case is matching, where the question is whether there is
a substitution σ , such that σ(s) = t, which is shown to be in PTIME in [7, 8], including the computation
of the (unique) compressed substitution.
In this extended abstract (of [23]) we report informally on progress in finding algorithms operating on
STGs for answering the submatching question, and which only operate on the STGs. We show that if
s is STG-compressed and linear, then submatching can be solved in polynomial time (Theorem 3.7). If
s is ground and compressed or s is DAG-compressed, we describe less complex algorithms that solve
the submatching question in polynomial time (Theorem 4.1 and Theorem 4.3). In the general case, we
describe a non-deterministic algorithm that runs in polynomial time. The deterministic algorithm runs
in time O(nc|FVmult(s)|) (Theorem 4.4), where n is the size of the STG and FVmult(s) the set of variables
occurring more than once in s. This is an exponential-time algorithm, but in a well-behaved parameter.
As an application and an easy consequence of the submatching algorithms, a (single-position or paral-
lel) deduction step on compressed terms by a compressed left-linear rewriting rule can be performed in
polynomial time. We also show that a sequence of n rewrites with a STG-compressed left-linear term
rewriting system on an STG-compressed target term can be performed in polynomial time (see Theo-
rem 5.1). Our result confirms results on complexity of rewrite derivations under DAG-compression [1],
namely that rewrite systems with a polynomial runtime complexity can be implemented such that the
algorithm requires polynomial time.

Example 1.1 Consider the term rewriting rule f (x) → g(x,b), and let the term t1 = f (f (f (a))) be
compressed as C1 → f (·), C2 → C1C1, T → C2(T ′),T ′ → f (a). A single term rewriting step on the
compressed term t1 by the rule f (x) → g(x,b) would produce T ′ → g(a,b), and hence the reduced
and decompressed term is f (f (g(a,b))). Other rewriting steps on the compressed term that do not
decompress the term have to analyze the contexts. Let another term be t2 = f 16(a), compressed as
C1 → f (·), C2 → C1C1, C3 → C2C2, C4 → C3C3, C5 → C4C4, T → C5(a). A term rewriting step on
T using f (x)→ g(x,b) may rewrite the context f (·) and thus would produce C1 → g(·,b), and hence
reduces the term in one blow to g(. . . ,(g(. . . ,b) . . .),b), which is a parallel rewriting step, see Section 5.

The structure of this extended abstract (of [23]) is as follows. First the basic notions, in particular STGs,
are introduced in Section 2. An algorithm for linear submatching is explained in Section 3. In Section 4
we explain submatching for some special cases and also a general non-deterministic algorithm for term
submatching of compressed patterns and terms. Finally, in Section 5, we illustrate the application in term
rewriting and argue that n rewrites for a left-linear TRS can be performed in polynomial time.

2 Preliminaries

We will use standard notation for signatures, terms, positions, and substitutions (see e.g. [2]). A position
is a word over positive integers. For two positions p1, p2, we write p1 ≤ p2, if p1 is a prefix of p2, and

M. Schmidt-Schauss 31

p1 < p2, if p1 is a proper prefix of p2. We call two strings w1,w2 compatible, if w1 is a prefix of w2,
or w2 is a prefix of w1. We write p[i] for the ith symbol of p, where 0 is the start index, and p[i, j] for
the substring of p starting at i ending at j. The set of free variables in a term t is denoted as FV(t). Let
FVmult(s) be the set of variables occurring more than once in s. Terms without occurrences of variables
are called ground. A term where every variable occurs at most once is called linear. A context is a
term with a single hole, denoted as [·]. Sometimes it is convenient to view a linear term containing one
variable as a context, where the single variable represents the hole. As a generalization, a multicontext
is a linear term, where the variable occurrences are also called holes. Let holep(c) be the position (as a
string of numbers) of a hole in a context c, and let the hole depth be the length of holep(c). If c = c1[c2]
for contexts c,c1,c2, then c1 is a prefix context of c and c2 is a suffix context of c. The notation c[s]
means the term constructed from the context c by replacing the hole with s. An n-fold iteration of a
context c is denoted as cn; for example c3 is c[c[c]]. A substitution σ is a mapping on variables, extended
homomorphically to terms by σ(f (t1, . . . , tn)) = f (σ(t1), . . . ,σ(tn)).

Definition 2.1 A term rewriting system (TRS) R is a finite set of pairs {(li,ri) | i = 1, . . . ,n}, called
rewrite rules, written {li→ ri}, where we assume that for all i : li is not a variable, and FV(ri)⊆ FV(li).
A term rewriting step by R is t R−→ t ′, if for some i: t = c[σ(li)] and t ′ = c[σ(ri)] for some context c and
some substitution σ .

2.1 Tree Grammars for Compression

First we introduce string compression: A straight line program (SLP) is a context-free grammar that
generates one word, has no cycles, and for every nonterminal A there is exactly one production of the
form A→ A1A2 or A→ a.
An application for SLPs is the representation of compressed positions in compressed terms. We will use
the well-known (polynomial-time) algorithms, constructions and their complexities on SLPs like equality
check of compressed strings, computing prefixes, suffixes, the common prefix (suffix) of two strings (see
[21, 9, 19, 20, 12, 15, 14]).
We consider compression of terms using tree grammars:

Definition 2.2 A singleton tree grammar (STG) is a 4-tuple G = (T N ,CN ,Σ,R), where T N are
tree/term nonterminals of arity 0, CN are context nonterminals of arity 1, and Σ is a signature of function
symbols (the terminals), such that the sets T N , CN , and Σ are finite and pairwise disjoint. The set of
nonterminals N is defined as N = T N ∪CN . The productions inR must be of the form:

• A→ f (A1, . . . ,Am), where A,Ai ∈ T N , and f ∈ Σ is an m-ary terminal symbol.

• A→C1A2 where A,A2 ∈ T N , and C1 ∈ CN .

• C→ [·] where C ∈ CN .

• C→C1C2, where C,C1,C2 ∈ CN .

• C→ f (A1, . . . ,Ai−1, [·],Ai+1, . . . ,Am), where A1, . . . ,Ai−1,Ai+1, . . . ,Am ∈ T N , C ∈ CN , and f ∈ Σ
is an m-ary terminal symbol.

• A→ A1 (λ -production), where A and A1 are term nonterminals.

Let N1 >G N2 for two nonterminals N1,N2, iff (N1→ t) ∈ R, and N2 occurs in t. The STG must be non-
cyclic, i.e. the transitive closure >+

G must be irreflexive. Furthermore, for every nonterminal N of G there
is exactly one production having N as left-hand side. Given a term t with occurrences of nonterminals,
the derivation of t by G is an exhaustive iterated replacement of the nonterminals by the corresponding

32 Polynomial Rewriting of Compressed Terms

right-hand sides. The result is denoted as valG(t). We will write val(t) when G is clear from the context.
In the case of a nonterminal N of G, we also say that N (or G) generates valG(N) or compresses valG(N).
The depth of a nonterminal N is the maximal number of >G-steps starting from N, and the depth of G is
the maximal depth of all its nonterminals. The size of an STG is the number of its productions, denoted
as |G|.

Definition 2.3 Let G be an STG and V be a set of variables. Then (G,V) is an STG with variables,
where additional production forms are permitted:

• A→ x, where A ∈ T N and x ∈V .

• x→ A (λ -production), where x ∈V and A ∈ T N .

This means that variables may be terminals or nonterminals, depending on the existing productions. The
measure Vdepth(N,V) is defined as the maximal number of >G-steps starting from N until an element of
V or a terminal is reached, and Vdepth(G,V) the maximum.
In the following we always mean STG with variables if variables are present.
An STG G is called a DAG, if there are no context nonterminals. 2

The compression rate may be exponential in the best case, but not larger: The size of terms represented
with an STG G is at most O(2|G|). Note that the term depth of DAG-compressed terms is at most the
size of the DAG, whereas the term depth of STG-compressed terms may be exponential in the size of
the STG. Note also that every subterm in a DAG-compressed term is represented by a nonterminal,
whereas in STG-compressed terms, there may be subterms that are only implicitly represented. It is
known that several computations in SLPs and STG, for example length computations, can be done in
polynomial time. Several forms of extensions of STGs are well-behaved, such that even a sequence of n
such extensions will lead to only polynomial size growth.

Compressed Matching. The investigation in [7] shows that (exact) term matching, also in the fully
compressed version including the computation of a compressed substitution, is polynomial. I.e. given
two nonterminals S,T , where S may contain variables, there is a polynomial time algorithm for answering
the question whether there is some substitution σ such that σ(val(S)) = val(T), and also for computing
the substitution, where the representation is a list of variable-nonterminal pairs, and the nonterminals
belong to an extension of the input STG.

Compressed Submatching. Given two first-order terms s, t, where s (the pattern) may contain variables,
the submatching problem is to identify an instance of s as a subterm of t. Submatching (also called
encompassment relation) is a prerequisite for term rewriting.

Definition 2.4 The compressed term submatching problem is:
Assume given a term s which may contain variables, and a (ground) term t, both compressed with an STG
G = GS ∪ GT , such that val(T) = t and val(S) = s for term nonterminals S ∈GS, T ∈GT . The task is to
compute a (compressed) substitution σ such that σ(s) is a subterm of t; also the (compressed) position
(all positions) p of the match in t should be computed. Specializations are:uncompressed if s is given as
a plain term without any compression; ground if s is ground; DAG-compressed, if s is DAG-compressed;
and linear, if s is a linear term, i.e. every variable occurs at most once in s.

Lemma 2.5 Given an STG G, a term s and a nonterminal T , with valG(T) = t, where t is ground. If
there is some substitution σ , such that σ(s) is a subterm of t, then there are the following possibilities:

1. There is a term nonterminal B of G such that valG(B) = σ(s).

M. Schmidt-Schauss 33

d
c

d d

(a) non-compatible overlap (b) parallel (c) sequential
Subfigures (b) and (c) only show the hole path of two occurrences of the context c.

Figure 1: Non-compatible, parallel and sequential overlap of c with d

2. There is a production B→ CB′ in G, such that σ(s) = c[valG(B′)], where c is a nontrivial suffix
context of valG(C). There are subcases for the hole position p of c.

(a) (overlap case) p is a position in s.

(b) p = p1 p2, where p1 is the maximal prefix of p that is also a position in s. Then s|p1 = x is
a variable. The algorithms below have to distinguish the subterm case where x occurs more
than once in s and the subcontext case where x occurs exactly once in s.

3 Term Submatching with Linear Terms

Overlaps of Linear Terms and Contexts. An important concept and technique used is periodicity of
contexts. This is a generalization of periodicity of strings: for example the string “bcabcabc” is periodic
with period length 3. A context c is called periodic if c = dnd′ for some contexts d,d′ and a positive
integer n, where d′ is a prefix of d. This is even generalized to multicontexts c (linear terms, where the
variables are the holes), and where periodicity means that c can be overlapped with itself at periodic
positions without conflicts.
We consider overlapping multicontexts c,c1,c2, . . . and a context d. In particular special variants of
overlaps have to be analyzed: Overlaps where the hole of d is not compatible with any hole of c. The
overlaps where a hole of c is compatible with a hole of d can be dealt with generalizing results from
words (or words with character-holes). If there are non-compatible overlaps of copies of c with d, then
only two configurations are possible: parallel and sequential (see Proposition 3.2 and Fig. 1), and there
are no mixed configurations. Thus, periodicities in linear terms are not only possible along the hole-path
of d but also along other paths, and there are two different kinds of such periodicities: the parallel and
the sequential variant. A helpful technical result is a periodicity theorem that tells us that a multi-context
c is periodic, if there is a multiple overlap of h+ 2 copies of c where h is the number of holes, and the
overlap is sufficiently dense. This will be used in the submatching algorithm for linear terms.

Example 3.1 Let d = f (a1, f ([·],a1)) and let c = f (a1, [·]). Then c overlaps d at position ε , which is a
compatible overlap, since the start as well as the hole position of c is on the hole path of d. The overlap
of c with d at position 2 (in d) is a non-compatible overlap, since the hole of c is at 2.2, which is not a
prefix or suffix of the hole path of d, which is 2.1.

34 Polynomial Rewriting of Compressed Terms

Proposition 3.2 Let c be a multicontext with at least one hole, and let d be a context with exactly one
hole, and let p1 < p2 be two positions of non-compatible overlaps of c in d. Let qi be the maximal
common hole path (mchp) of c at pi for i = 1,2. Then there are the following two cases (see Figure 1):

1. q1 = q2 (the parallel overlap case). Then for p′ such that p1 p′ = p2 the path p1(p′)n is compatible
with holep(d) for all n. Also, this is a multiple overlap of c′ with itself at positions (p′)i, where c′

is constructed from c with an extra hole at p′′, where p1 p′′ = holep(d).

2. q2 < q1 (the sequential overlap case). Then p2q2 = p1q1. I.e., there is a fixed position on the hole
path of d, where the hole paths of occurrences of c deviate.

Example 3.3 Let c′ = f (f (a1,a2), [·]) be a context, c = f (f (x,y),(c′)100[.]), and let d = (c′)100[·].
Then there is an overlap of c with d at positions ε,2,2.2, It is an overlap of the first kind,
i.e. a parallel overlap. A sequential overlap is the following: Let c = f (a1, f (a1, f (a1, [·]))) and let
d = f (a1, f (a1, f (a1, f ([·], f (a1, f (a1,a1)))))). Then the overlap positions are ε,2,2.2,2.2.2.

Theorem 3.4 (Periodicity-Theorem) Let c be a multi-context with h≥ 1 holes. Let p be the position of
a fixed hole of c, and let pi, i = 1, . . . ,n be prefixes of p such that i < j implies pi < p j with n ≥ h+ 2.
Assume that there is a (right-cut) overlap of n copies of c starting at position pi such that p is a prefix of
pi p, i.e., the hole position of c starting at pi is compatible with p for all i, and only positions in c at p1 are
relevant for the overlap. Let pmax be max{|pi+1|− |pi| | i = 1, . . . ,n−1}. Assume |p|− |pn| ≥ 2h · pmax;
this means there are 2h · pmax common positions on the path p of all occurrences of c.
Then the multicontext c is periodic (in the direction p), and a period length is pall :=
gcd(|p2|− |p1|, |p3|− |p2|, . . . , |pn|− |pn−1|). Moreover, the overlap is consistent with using the same
substitution for the variables for every occurrence of c.

Tabling Prefixes of Multicontexts in Contexts.
The core of the algorithm for finding submatches of a linear term s in other terms (under STG-
compression) is the construction of a table in dynamic-programming style. The table contains overlaps
of s with contexts that are explicitly represented in the STG G by a context nonterminal. In fact the table
is split into several tables: There is a table per context nonterminal A of G and per variable (hole) of s
for the compatible overlaps. In addition there is an extra table for non-compatible overlaps. This makes
h+1 tables where h is the number of variables of s.
The entries in the tables are pairs of a position and a substitution necessary for the overlap. Since terms of
exponential size and depth may be represented in the STG G, a compact representation of a large number
of entries is necessary in order to keep the tables of polynomial size. Indeed this is possible exploiting
periodicity. If the number of entries in a table are sufficiently dense, then the periodicity theorem implies
that a large subset of the entries enjoys regularities, and a series of periodic overlaps can be represented
in one entry, consisting of: a start position, a period (a position, respectively a context nonterminal), and
the number of successive entries.
In more detail, the construction of the prefix tables is bottom-up w.r.t. the grammar where the produc-
tions A→ A1A2 for context nonterminals permit to construct the A-tables from the A1,A2-tables, and
where the start are the contexts with hole-depth 1. This construction must take into account the compact
representation of the entries: single ones and periodic ones, which makes the description of the algorithm
rather complex due to lots of cases. The construction of the prefix table in the case A→ A1A2 and the
periodic cases is depicted in Figure 2 where (a) shows the case where A has a periodic suffix, (b) shows
the case where A has an inner part that is periodic, (c) shows a case where the periodicity goes into a
direction that is not compatible with the hole of A2, which leads to the sequential overlap case; and (d) is
a case of a sequential overlap already in the table for A1. The generation of the periodic entries is done in

M. Schmidt-Schauss 35

an extra step: compaction, where the periodic overlaps are detected by searching for sufficiently dense
entries. This is the only place where periodic entries are generated.
In addition to the prefix tables there is a result table, which contains the detected submatchings, and
which is maintained during construction of the prefix tables.
Since it is necessary to also have submatchings in terms, i.e. for term nonterminals, we keep things simple
and assume that every production for a term nonterminal is of the form A→ CA1, where A1 is a term
nonterminal with production A1→ a, i.e. a constant. This rearrangement of G can be done efficiently,
and thus does not restrict generality. For these nonterminals the extraction of the submatchings can be
done using the already constructed prefix-tables.
Note that during construction of the tables, the STG G may have to be extended in every step.

Example 3.5 We describe several small examples for compatible entries in a prefix table. Therefore we
slightly extend Example 3.3. Let the STG be S→ A;A→ A1A1;A1→ A2A2,A2→ f (a1, [·]).

1. Then (C,A2,∞) for C→ [·] is a potential entry in a result table for A.

2. Let A4→ g([·]),B→ A4A,C′→ A4. Then (C′,A2,∞) is an entry in the result table for B.

3. Let B′→ BA4, then (A4,A2,2) is a potential entry in the result table for B′.

4. The tuple (A4,A2,3) is an entry in the prefix table for B.

5. Let B′′→ A6A4,A6→ A4A1. The context A6 is then a potential entry in the result and prefix tables
of B′′.

Note that item 4 cannot be used as a result, since composing B as in B′→ BA4 in item 3, may render an
overlap invalid.

Example 3.6 We describe an example for a non-compatible entry in a prefix table. Therefore we
slightly modify Example 3.3. Assume there is an STG G. Let c = f (a1, f (a1, f (a1, f (a1, [·])))),
d = f (a1, f (a1, f (a1, f ([·], f (a1, f (a1,a1)))))), and let P,D,C0,S be a nonterminals such that val(P) =
f (a1, [·]), val(D) = d,val(S) = c, val(C0) = [·]. Then an entry in the non-compatible prefix table for D
could be (C0,P,3).

Theorem 3.7 (Linear Submatching) Let G be an STG, and S,T be two term nonterminals such that
val(S) is a linear term, and the submatching positions of val(S) in val(T) are to be determined. Then
the algorithm for linear submatchings computes an O(|G|5)-sized representation of all submatchings of
val(S) in val(T) in polynomial time dependent on the size of G.

4 Submatching Algorithms for Other Cases

We consider several specialized situations: ground terms, uncompressed patterns, DAG-compressed
terms, and also non-linear terms.

4.1 Ground Term Submatching

If s is ground and compressed by a nonterminal S then submatching can be solved in polynomial time
by translating both compressed terms into their compressed preorder traversals (i.e. strings) [4, 5] and
then applying string pattern matching [21, 15]. The string matching algorithm in [15, 11] computes a
polynomial representation of all occurrences. Note that in our case, the structure of ground terms is

36 Polynomial Rewriting of Compressed Terms

A2

P

C
A1

A2

P

C
A1

A2

P

C
A1

A2

P

C
A1

(a) (b) (c) (d)

Figure 2: Cases in the construction of the prefix tables for periodic entries

very special as a string matching problem: periodic overlaps of the preorder traversal as strings are not
possible. Thus the complete output of the algorithm is as follows: (i) a list of term nonterminals N of
the input STG G, where val(σ(S)) = val(N), and (ii) a list of pairs (N, p), where the production for N is
of the form N →CN′, p is a compressed position, and val(C)|val(p)[val(N′)] = val(S). Moreover, every
nonterminal N appears at most once in the list.
The required time for string matching is O(n2m) where n is the size of the SLP of T and m is the size of
the SLP of S. Since the preorder traversal can be computed in linear time (see [8]), we have:

Theorem 4.1 The ground compressed term submatching can be computed in time O(|GT |2|GS|), and the
output is a list of linear size.

4.2 DAG-Compressed Non-Linear Submatching

Now we look for the case of DAG-compressed s, which is slightly more general than the uncompressed
case, and where variables may occur several times in s. Also for this case, there is an algorithm for
submatching that requires polynomial time. The algorithm outputs enough information to determine all
the positions and substitutions of a submatch.

Example 4.2 The number of possible substitutions for a submatch in a DAG-compressed term may
be exponential: Let the productions be S→ f (x,y), and T → f (A1,A1),A1 → f (A2,A2), . . . ,An−1 →
f (An,An),An → a. Then val(T) is a complete binary tree of depth n and there is a submatch at every
non-leaf node. Clearly, it is sufficient to have all Ai as submatchings in the output, which is of linear size.

In the case of a DAG-compressed or uncompressed pattern-term (not necessarily linear) s and STG-
compressed target term t, the algorithm for computing all submatchings is designed in dynamic program-
ming style. It constructs a table of possible submatchings of s in the context nonterminals corresponding

M. Schmidt-Schauss 37

C

s

C

s

(a) (b)

Figure 3: Cases in the construction of the s-in-C-table for DAG-compression

to t. The key of the table is (C, p), where C is a context nonterminal, and p a position that is a suffix
of val(C) as well as a position in s. The number of these positions is linear in |Gs|+ |Gt | for every
context. The entries are substitutions into the variables of s, i.e. a list of pairs (xi,Ai), where Ai is a term
nonterminal representing a ground term. There is also a result list of found submatchings in contexts
C contributing to T , and term nonterminals for ground terms that are instances of s. The construction
proceeds again bottom-up in the STG Gt for context nonterminals, and for A→ A1A2, constructs the
table for A from the tables for A1,A2, and in case a full submatching is found, inserts a result into the
result list.
Finally, from these information, a representation of all submatchings can be constructed by looking at
the right hand sides of the productions A→CB for term nonterminals, and using the table entries for C,
and also constructing the occurrences of the ground terms.

Theorem 4.3 Let G be an STG, and S,T be two term nonterminals such that S is DAG-compressed.
Then the submatch computation problem can be solved in polynomial time. Also an explicit polynomial
representation of all matching possibilities can be computed in polynomial time.

4.3 A Non-Deterministic Algorithm for Sub-Matching in the General Case

The submatching problem for STG-compressed pattern terms that may be nonlinear can be solved by a
relatively easy search that leads to a non-deterministic polynomial time algorithm: Given S, with non-
linear s = val(S), extract and construct a nonterminal B representing a subterm f (r1, . . . ,rn) of s such
that two terms ri,r j contain a common variable. Then non-deterministically choose a right hand side
r of a production of Gt of the form f (. . .), then compute the usual match of B with r using [7] which
will produce an instantiation of at least one variable of val(B), and hence of s. Then iterate this until all
variables with double occurrences are instantiated. For the resulting linear term we know how to find all
matching positions.

Theorem 4.4 (Nondeterministic General Submatch) Let G be an STG and S,T be two nonterminals
of G where val(S) may contain variables. Then the algorithm for fully compressed submatching for
compressed terms s, t requires at most searching in |G||FVmult(s)| alternatives for the substitution and the
computation for one alternative can be done in polynomial time. Thus the submatching problem is in NP.

There remains a gap in the knowledge of the complexity of the fully compressed submatching problem
for terms, which for the decision problem is between PTIME and NP.

38 Polynomial Rewriting of Compressed Terms

Remark 4.5 The non-linear submatching problem can be computed in polynomial time if there are few
variable occurrences (≤ |G|) in s: First linearize s, then use the linear compressed submatch and then
perform a postprocessing checking equality enforced by the variables of s.

5 Polynomial Compressed Term Rewriting

For our compressed representation the natural approach to rewriting is to use parallel rewriting of the
same subterm at several positions and by the same rewriting rule. Note, however, that the set of redexes
that are rewritten in parallel will depend on the structure of the STG Gt , and not on the structure of the
rewritten term t.
Let R be a compressed TRS, let t be a ground term with valG(T) = t, let R be compressed by the STG
GR as {Li→ Ri | i = 1, . . . ,n} where Li,Ri are term nonterminals.
A (parallel) term rewriting step is performed as follows:
First select Li→ Ri as the rule. There is an oracle, which is one of our submatching algorithms applied
to Li, for finding the redex for val(Li) or the set of redexes that provides the following:

1. An extension G′ of G, i.e. additional nonterminals and productions.

2. A substitution σ as a list of pairs: {x1 7→ A1, . . . ,xm 7→ Am}, where FV(val(Li)) = {x1, . . . ,xm}, Ai

are term nonterminals in G′, and val(Ai) is a subterm of t. It is also assumed that the instantiation
is integrated in the grammar G′ as productions xi→ Ai for i = 1, . . . ,m.

3. A term nonterminal A (corresponding to Li) in G′ which contributes to val(T), and a compressed
position p.

Then the rewriting step is performed by modifying the grammar such that somewhere in the part of the
grammar contributing to t: Li is replaced by Ri. This will also generate an extension of Gt on the fly and
also a copy of the STG GR is made.
A single-position rewriting step under STG-compression is performed in a similar way.

Theorem 5.1 Let R be a TRS compressed with GR and t be a term compressed with an STG G.
Then a sequence of n term rewriting steps where submatching is a non-deterministic oracle that is
not counted, can be performed in polynomial time. The size increase by n term rewriting steps is
O
(
|GR|2n7

(
|G|2 + |G|(logn+2|GR|)+(logn+ |GR|)2

))
.

The complexity bound is O(n7 log2(n)) depending on the number n of rewrites; O(|G0|2) depending on
the size of GT ; andO(|GR|4) depending on the size of GR. Note that the degree of the polynomial for the
estimation of the worst case running time is worse than the space bound. The term rewriting sequence
has to be constructed (+ 1) and Plandowski equality check has to be used in every construction step,
which contributes a factor of 3 in the exponent. But note that there are faster deterministic tests [15, 11]
and even faster randomized equality checks [10, 3, 24].
Single-position rewriting requires a partial decompression of the redex position (similar to the parallel),
which leads to an extra increase in the size of the STG, but to the same, still polynomial, complexity.
Combining the results on submatching and sequences of rewriting, we obtain the following corollaries:

Corollary 5.2 Let R be an STG-compressed TRS and t be an STG-compressed term. Then a sequence
of n term rewriting steps using the submatching algorithm in Subsection 4.3 can be performed in non-
deterministic polynomial time.

Proof. This follows from Theorems 5.1 and 4.4. 2

M. Schmidt-Schauss 39

Corollary 5.3 Let R be a left-linear STG-compressed TRS and t be an STG-compressed term. Then n
term rewriting steps where the submatching algorithms in Subsection 4.3 are used can be performed in
polynomial time.

Proof. This follows from Theorems 5.1 and 3.7. 2

Corollary 5.4 Let R be a TRS with DAG-compressed left-hand sides and STG-compressed right hand
sides and let t be an STG-compressed term. Then n term rewriting steps where the submatching algorithm
in Subsection 4.2 is used can be performed in polynomial time in n.

Proof. This follows from Theorems 5.1 and 4.3. 2

Corollary 5.5 Let R be an STG-compressed TRS and t be an STG-compressed term, such that the left
hand sides of every rule has at most |G| occurrences of variables. Then n term rewriting steps (see
Remark 4.5) can be performed in polynomial time in n.

6 Conclusion

We have constructed several polynomial algorithms for finding a submatch under STG-compression, or
restrictions thereof. It is also shown that n rewrite steps can be performed in polynomial time under
STG-compression in several cases: left-linear and STG-compressed TRS, DAG-compressed or ground
left hand sides of rules. Also in the general case of non-linear left hand sides n rewrites can be performed
non-deterministically in polynomial time, where a search for a redex is required. This is connected to
the open problem of the exact complexity of computing submatches also for non-linear terms.
A connection to the results in [1] on polynomial runtime complexity is that our results also imply that
for TRSs with polynomial runtime complexity the (single-position and parallel) rewriting can be imple-
mented such that n rewrite steps can be performed in polynomial time.
A remaining open question is whether the general STG-compressed submatching (of nonlinear terms s
in t) can be solved in polynomial time or not.

References

[1] Martin Avanzini & Georg Moser (2010): Closing the Gap Between Runtime Complexity and Polytime Com-
putability. In Christopher Lynch, editor: 21st RTA, LIPIcs 6, Schloss Dagstuhl, Germany, pp. 33–48,
doi:10.4230/LIPIcs.RTA.2010.33.

[2] Franz Baader & Tobias Nipkow (1998): Term Rewriting and All That. Cambridge University Press, New
York, NY, USA.

[3] Piotr Berman, Marek Karpinski, Lawrence L. Larmore, Wojciech Plandowski & Wojciech Rytter (2002): On
the Complexity of Pattern Matching for Highly Compressed Two-Dimensional Texts. J. Comput. Syst. Sci.
65(2), pp. 332–350, doi:10.1006/jcss.2002.1852.

[4] Giorgio Busatto, Markus Lohrey & Sebastian Maneth (2005): Efficient Memory Representation of XML
Documents. In: Proceedings of DBPL 2005, LNCS 3774, pp. 199–216, doi:10.1007/11601524_13.

[5] Giorgio Busatto, Markus Lohrey & Sebastian Maneth (2008): Efficient Memory Representation of XML
Document Trees. Information Systems 33(4–5), pp. 456–474, doi:10.1016/j.is.2008.01.004.

[6] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison & M. Tommasi (1997): Tree Au-
tomata Techniques and Applications. Available at http://www.grappa.univ-lille3.fr/tata. Release
October 2002.

40 Polynomial Rewriting of Compressed Terms

[7] Adrià Gascón, Guillem Godoy & Manfred Schmidt-Schauß (2008): Context Matching for Compressed
Terms. In: 23rd Annual IEEE Symposium on Logic in Computer Science (LICS 2008), IEEE Computer
Society, pp. 93–102, doi:10.1109/LICS.2008.17.

[8] Adrià Gascón, Guillem Godoy & Manfred Schmidt-Schauß (2011): Unification and matching on compressed
terms. ACM Trans. Comput. Log. 12(4), pp. 26:1–26:37. Available at http://doi.acm.org/10.1145/
1970398.1970402.

[9] Leszek Gasieniec, Marek Karpinski, Wojciech Plandowski & Wojciech Rytter (1996): Efficient Algorithms
for Lempel-Ziv Encoding (Extended Abstract). In Rolf G. Karlsson & Andrzej Lingas, editors: SWAT,
Lecture Notes in Computer Science 1097, Springer, pp. 392–403, doi:10.1007/3-540-61422-2_148.

[10] Leszek Gasieniec, Marek Karpinski, Wojciech Plandowski & Wojciech Rytter (1996): Randomized Efficient
Algorithms for Compressed Strings: The Finger-Print Approach (Extended Abstract). In: 7th CPM 96,
Lecture Notes in Computer Science 1075, Springer, pp. 39–49, doi:10.1007/3-540-61258-0_3.

[11] Artur Jez (2012): Faster Fully Compressed Pattern Matching by Recompression. In: ICALP (1), Lecture
Notes in Computer Science 7391, Springer, pp. 533–544, doi:10.1007/978-3-642-31594-7_45.

[12] Marek Karpinski, Wojciech Rytter & Ayumi Shinohara (1995): Pattern-matching for strings with short de-
scription. In: CPM ’95, LNCS 937, Springer-Verlag, pp. 205–214, doi:10.1007/3-540-60044-2_44.

[13] Jordi Levy, Manfred Schmidt-Schauß & Mateu Villaret (2006): Bounded Second-Order Unification is NP-
complete. In: Term Rewriting and Applications (RTA-17), LNCS 4098, Springer, pp. 400–414, doi:10.
1007/11805618_30.

[14] Jordi Levy, Manfred Schmidt-Schauß & Mateu Villaret (2008): The Complexity of Monadic Second-Order
Unification. SIAM J. of Computing 38(3), pp. 1113–1140, doi:10.1137/050645403.

[15] Yury Lifshits (2007): Processing Compressed Texts: A Tractability Border. In: CPM 2007, LNCS 4580,
Springer, pp. 228–240. Available at http://dx.doi.org/10.1007/978-3-540-73437-6_24.

[16] Markus Lohrey (2012): Algorithmics on SLP-compressed strings. A survey. Groups Complexity Cryptology
4(2), pp. 241–299, doi:10.1515/gcc-2012-0016.

[17] Markus Lohrey, Sebastian Maneth & Manfred Schmidt-Schauß (2009): Parameter Reduction in
Grammar-Compressed Trees. In: 12th FoSSaCS, LNCS 5504, Springer, pp. 212–226, doi:10.1007/
978-3-642-00596-1_16.

[18] Markus Lohrey, Sebastian Maneth & Manfred Schmidt-Schauß (2012): Parameter reduction and automata
evaluation for grammar-compressed trees. J. Comput. Syst. Sci. 78(5), pp. 1651–1669, doi:10.1016/j.
jcss.2012.03.003.

[19] Wojciech Plandowski (1994): Testing equivalence of morphisms in context-free languages. In: ESA 94,
Lecture Notes in Computer Science 855, pp. 460–470, doi:10.1007/BFb0049431.

[20] Wojciech Plandowski & Wojciech Rytter (1999): Complexity of Language Recognition Problems for Com-
pressed Words. In: Jewels are Forever, Springer, pp. 262–272, doi:10.1007/978-3-642-60207-8_23.

[21] Wojciech Rytter (2004): Grammar Compression, LZ-Encodings, and String Algorithms with Implicit In-
put. In J. Diaz et. al., editor: ICALP 2004, LNCS 3142, Springer-Verlag, pp. 15–27, doi:10.1007/
978-3-540-27836-8_5.

[22] Manfred Schmidt-Schauß (2005): Polynomial Equality Testing for Terms with Shared Substructures. Frank
report 21, Institut für Informatik. FB Informatik und Mathematik. Goethe-Universität Frankfurt.

[23] Manfred Schmidt-Schauss (2013): Linear Pattern Matching of Compressed Terms and Polynomial Rewriting.
Accepted for publication, 2013.

[24] Manfred Schmidt-Schauss & Georg Schnitger (2012): Fast Equality Test for Straight-Line Compressed
Strings. Information processing letters, doi:10.1016/j.ipl.2012.01.008.

[25] Jacob Ziv & Abraham Lempel (1977): A Universal Algorithm for Sequential Data Compression. IEEE
Transactions on Information Theory 23(3), pp. 337–343, doi:10.1109/TIT.1977.1055714.

R. Echahed and D. Plump (Eds.): 7th International Workshop on
Computing with Terms and Graphs
EPTCS 110, 2013, pp. 41–55, doi:10.4204/EPTCS.110.6

Evaluating functions as processes

Beniamino Accattoli
Carnegie Mellon University - Pittsburgh, PA, US

A famous result by Milner is that theλ -calculus can be simulated inside theπ-calculus. This simu-
lation, however, holds only modulo strong bisimilarity on processes, i.e. there is a slight mismatch
betweenβ -reduction and how it is simulated in theπ-calculus. The idea is that evaluating aλ -term in
theπ-calculus is like running an environment-based abstract machine, rather than applying ordinary
β -reduction. In this paper we show that such an abstract-machine evaluation corresponds to linear
weak head reduction, a strategy arising from the representation of λ -terms as linear logic proof nets,
and that the relation between the two is as tight as it can be. The study is also smoothly rephrased in
the call-by-value case, introducing a call-by-value analogous of linear weak head reduction.

Introduction

A key result about the expressiveness of theπ-calculus is that it can represent theλ -calculus, as it has
been showed by Robin Milner [33]. During the nineties the relationship between the two systems has
been explored in-depth, mostly by Davide Sangiorgi [36, 37]and Gérard Boudol [14, 13]. Nowadays,
it takes a relevant part in the standard reference for theπ-calculus [38], and in any introductory course
about it. From the process calculus point of view, it helps ingetting deeper insights into its theory,
especially because theπ-calculus is far less canonical then theλ -calculus. From theλ -calculus point of
view, it provides new tools to analyze the behavior ofλ -terms and the dynamics ofβ -reduction.

The idea is that theπ-calculus can be considered as a sort of flexible abstract machine to which the
λ -calculus can be compiled in various ways. There are in fact various encodings, each one corresponding
to a particular evaluation strategy in theλ -calculus. In particular, Milner showed that Plotkin’s call-by-
name and call-by-value strategies [35] can be both faithfully represented.

The way in which the representation isfaithful, however, is quite subtle. It is looser than what one
might expect, as the diagram in Figure 1.adoes not hold. It is only possible to get the diagram in
Figure 1.b:Pt , the process representingt, does not reduce toPs, but to a processQ which is strongly
bisimilar to Ps. One might think that a better encoding could solve this problem, but this is a naı̈ve
expectation: the two systems compute in radically different ways, the mismatch is inherent. In Milner’s
resultPs andQ are strongly bisimilar, which means that they behave the same externally, i.e. in their

a)

t s

Pt Ps

β

*
π

c)

t s

Pt

⇒
t s

Pt Psπ

b)

t

Pt Q∼ Ps

s
β

*
π

d)

t

Pt Psπ

⇒∃ss.t.

t

Pt Ps

s

π

Figure 1: Diagrams describing the relationship between terms and processes.

42 Evaluating functions as processes

interactions with every possible environment. However, the two processes behave in a quite different
way internally, i.e. with respect to reductions. The discrepancy concerns the granularity of evaluation:
λ -calculus uses a coarse, big-step substitution rule, whiletheπ-calculus evaluates in small, fine-grained
steps, as an abstract machine. Nonetheless, the evaluationof t terminates if and only if the evaluation of
the corresponding processPt terminates. In this sense, the representation is sometimessaid to be sound
and complete.

This paper refines the relationship between theλ -calculus and theπ-calculus by extending the former
with explicit substitutions—which may be considered as an alternative to abstract machines—in order to
get a closer match of reduction steps. In the call-by-name case we show that the strategy corresponding to
the evaluation in theπ-calculus is exactlylinear weak head reduction⊸, the small-step head strategy of
linear logic proof nets [29, 3]. This notion of evaluation has connections with Krivine’s abstract machine
[20], Bohm’s separation theorem [29], computational complexity [9], the geometry of interaction [19],
game semantics [18, 17], and the differentialλ -calculus [24]. The relationship shown here is extremely
strong. It is represented in the diagrams in Figure 1.c-d, which hold modulo structural equivalence only.
They express the fact that the translation is a strong bisimulation with respect to reduction(note thatone
step maps toonestep, and vice-versa).

The relationship between theπ-calculus and linear logic has been analyzed from various points of
view [31, 1, 12, 11, 27, 23, 15]. Our study essentially refinesthe work of Caires, Pfenning, and Toninho
in [39], where the encodings of theλ -calculus in theπ-calculus are re-understood as the encodings of
λ -calculus into linear logic (due to Girard [26], see also [28]). The refinement consists in looking to
such encodings via linear logic proof nets, but replacing the explicit use of proof nets with the lighter and
equivalent reformulations as calculi of explicit substitutionsat a distance, developed in [7, 8, 2, 10, 3, 5].

Contributions. In some sense there is not much original content in this paper. Damiano Mazza’s
master thesis [30] (in French and unpublished) already developed the connection with linear weak head
reduction. Similar ideas are sketched by Boudol in the introduction of [13]. Also, Milner’s seminal
paper already suggested to use some environment device to refine the encodings, an idea that has then
been explored by Vasconcelos [40] and recently by Cimini, Sacerdoti Coen, and Sangiorgi [16].

What is original here is the presentation. Our approach provides a remarkably compact develop-
ment, confirming the relevance of explicit substitutionsat a distanceas a very flexible syntactical tool.
Our presentation simplifies in the extreme Mazza’s study, byexploiting the simpler and more manage-
able reformulation of weak linear head reduction in thelinear substitution calculus[9, 3]. In addition,
by clarifying the connection with a crucial concept in the theory of linear logic, we get an important
corollary for free. In [9] it is proven that linear head reduction is at most quadratically longer than head
reduction, and this result holds also with respect to the weak (i.e. not under lambdas) variants of these
reductions1. Plotkin’s call-by-name strategy is the same thing as weak head reduction. Consequently, we
get a quadratic relation between the call-by-name strategyand the evaluation in theπ-calculus, which is
a non-trivial quantitative refinement of Milner’s result.

However, our contribution is not only about the presentation. The study of call-by-name is comple-
mented by the study of a call-by-value encoding, from which we extract a call-by-value⊸v analogous
of linear weak head reduction, which has never been considered before. We also show that this new
strategy enjoys the analogous of thesubterm property[9] of linear weak head reduction, which is the
basic property for complexity analysis. Last but not least,we give a presentationat a distanceof the

1The upper bound in [9] is exact, and it is based on a trasformation of reductions which applies to arbitrary reduction
sequences, in particular even to non-terminating terms. For instance, the quadratic bound is reached by the evaluationof
(λx.xx)λx.xx, which is weak.

B. Accattoli 43

rewriting rules of theπ-calculus which is a contribution of independent interest.
Despite the compactness of the presentation, the details turned out to be quite delicate. The use

of distance rules, which are rewriting rules involving contexts (i.e. terms with holes), is crucial. They
reflect on terms the local rules of linear logic proof nets, and they are essential in order to get a strong
bisimulation of reductions. These contexts can capture variables and names, a fact which requires a
very careful analysis of the translations. This is why we present the proofs of the translation in details,
almost certifying the result. Moreover, we use colors to ease the reading, so we suggest to read the paper
simultaneously on paper and on a computer screen.

The relationship with proof nets. Proof nets do not appear in this paper, we limit ourselves tothe
equivalent formulations as calculi at a distance. However,for the call-by-value calculus the detailed
correspondence between terms and proof nets can be found in [5] (which uses big-step rules, while here
we use small-step rules), for call-by-name the interested reader may have a look to [7, 2] (that do employ
small-step rules, but in a slightly different way). On proofnets, linear head reduction is the small step
strategy which reduces only the cuts at level 0 which do not involve the auxiliary conclusions of !-boxes.
The weak variant can be defined in exactly the same way if boxesare also used for̀ (which in this
context rather corresponds to the right rule for linear implication in intuitionistic linear logic, and not to
the` of classical linear logic). Using boxes for linear implication is lessad-hocthan it may seem at first
sight; a technical discussion of this issue is in Section 6 of[5]. This paper provides another justification
for such boxes: they are needed to properly reflect evaluation in theπ-calculus.

Plan of the paper.Section 1 introduces the linear substitution calculus, andSection 2 introduces the
presentation of theπ-calculus that we use. Sections 3 and 4 study the call-by-name and the call-by-value
encodings, respectively.

Acknowledgements.To Frank Pfenning, for having encouraged me to work out the details of this
work, and to Damiano Mazza, for inspiration and comments on an early draft. This work was partially
supported by the Qatar National Research Fund under grant NPRP 09-1107-1-168.

1 The linear substitution calculus

The language of thelinear substitution calculusλlsub is given by the following grammar for terms:

t,s,u, r ::= x | λx.t | ts | t[x/s]

The constructort[x/s] is called anexplicit substitution(of s for x in t, the usual (implicit) substitution is
instead notedt{x/s}). Both λx.t andt[x/s] bind x in t. We are not going to define the full calculus (for
which we refer to [9, 3]), but only linear weak head reduction. However, let us point out that the linear
substitution calculus is a variation over a calculus of explicit substitutions introduced by Robin Milner
in [34], to analyze the translation ofλ -calculus to Bigraphs.

We shall use contexts extensively, so we define them formally. In particular, we need to specify the
set∆ of variables captured by a given context. A weak head context, or simply anevaluation context, is
a term of the following grammar (to ease the reading on screenall contexts will be in blue):

E/0 ::= L · M | E/0t E∆⊎{x} ::= E∆[x/t] | E∆⊎{x}t

A special case of evaluation context is given bysubstitution contexts, notedL∆ and defined by:

L /0 ::= L · M L∆⊎{x} ::= L∆[x/t]

Definition 1. Linear weak head reduction⊸ is defined as the union of⊸dB and⊸ls, which are given
by the closure by evaluation contexts (i.e.⊸dB:= E∆[7→dB] and⊸ls:= E∆[7→ls]) of the rules7→dB and
7→ls defined as:

44 Evaluating functions as processes

L∆Lλx.tMs 7→dB L∆Lt[x/s]M E∆LxM[x/s] 7→ls E∆LsM[x/s] with x /∈ ∆

The rule 7→ls implicitly assumes the side-conditionfv(s)∩∆ = /0. The assumption is implicit be-
cause it can always be guaranteed byα-conversion: ifu= E∆LxM[x/s] andfv(s)∩∆ 6= /0 then there exist
a set of variablesΣ and an evaluation contextFΣ s.t. u=α FΣLxM[x/s] andfv(s)∩Σ = /0.

These rule areat a distance, because their definition involves contexts, which is how locality on proof
nets is reflected on terms. In Milner’s calculus the first ruledoes not useL∆L · M. This is not a detail: the
results in this paper would not hold with respect to Milner’soriginal presentation.

It is natural to wonder in which sense the linear substitution calculus islinear. In contrast to other
linear calculi, variables may have multiple occurrences, and arguments are not forced to be used only
once. A first superficial linear aspect of the calculus is thatvariable occurrences are substituted one at the
time. A second much deeper aspect is that its head strategy—characterized by a factorization theorem
in the same way as head reduction inλ -calculus [3]—islinear head reduction, whose main feature is
thesubterm property(namely: any subtermu which is duplicated at any point of a reductiont ⊸k s is a
subterm oft, whose size then does not depend onk) which implies that the implementation cost ofevery
step is linear (in the size oft, the parameter for complexity). This is a fundamental property, not enjoyed
by any strategy inλ -calculus (for which the cost of one step is not even polynomial in the size oft),
and which opens the way to the study of computational complexity [9]. Here we deal with linearweak
head reduction, which forbids reduction under abstractions. The restriction does not affect the subterm
property.

2 The π-calculus

The fragment of theπ-calculus we use here is essentially the asynchronous calculus in [21] with both
unary and binary inputs and outputs, morally correspondingto the exponential and the multiplicative con-
nectives of linear logic (in the typed case of [21]) and without sums (which correspond to the additives).
The only change is that we do not use their forwarding processes2. The grammar is:

P,Q,R ::= 0
∣∣ x〈y〉

∣∣ x〈y,z〉
∣∣ νxP

∣∣ x(y,z).P
∣∣!x(y).P

∣∣ P | Q

We need a notion of context also for processes. Anon-blocking context is given by:

N /0 ::= L · M
∣∣ N /0 | Q

∣∣ P | N /0 N∆⊎x ::= νxN∆
∣∣ N /0LN∆⊎xM

The language is considered modulostructural congruence, i.e. the minimum equivalence relation gen-
erated by the following rules and closed by non-blocking contexts:

P | 0≡ P P | (Q | R)≡ (P | Q) | R P | Q≡ Q | P

νx0≡ 0
x /∈ fn(P)

P | νxQ≡ νx.(P | Q)
νxνyP≡ νyνxP

In order to prove the simulation theorems we will use the following three properties of≡, proved by
easy inductions onN∆, P, andN∆, respectively (the set of free variables of a context is defined as for
processes but usingfn(L · M) = /0).

Lemma 2. Let ∆ be a set of variables,N∆ a non-blocking context, P a process s.t.fn(P)∩∆ = /0, and
x,y /∈ ∆. Then:

2Forwarding processes correspond to axioms in linear logic.In terms of proof nets, avoiding forwarding processes corre-
spond to use an interaction nets presentation,i.e. to work modulo cut-elimination on axioms.

B. Accattoli 45

1. N∆LQM | P≡ N∆LQ | PM.
2. If x /∈ fn(P) thenνxP≡ P.

3. If x /∈ fn(N∆) thenνxN∆LPM ≡ N∆LνxPM.
The rewriting rules are the following:

x〈y,z〉 | x(y′,z′).Q →⊗ Q{y′/y}{z′/z} x〈y〉 | !x(z).Q →! Q{z/y} | !x(z).Q

as usual they are both closed by non-blocking contexts and considered modulo≡. The second rule puts
together replication and unary communication as in [39, 21].

π-calculus, at a distance.In order to simplify the proof of the bisimulation, we are going to use an
alternative but equivalent definition of reduction in theπ-calculus. Essentially, we have to reformulate the
π-calculusat a distance. The use of the structural equivalence in the definition of the rewriting relation
of theπ-calculus induces some annoying complications when one tries to reflect process reductions on
terms. We are going to reformulate the reduction rules via non-blocking contexts, and get rid of structural
equivalence.

The rewriting rules⇒⊗ and⇒! are given by the closure by non-blocking contexts (but are not closed
by structural congruence) of the following relations: ifx /∈ ∆∪Γ then

N∆Lx〈y,z〉M | MΓLx(y′,z′).PM 7→⊗ MΓLN∆LP{y′/y}{z′/z}MM
N∆Lx〈y〉M | MΓL!x(z).PM 7→! MΓLN∆LP{z/y} | !x(z).PMM

Actually, one should ask three futher conditions on variables: 1) ∆ ∩ Γ = /0; 2) ∆ ∩ fv(P) = /0; 3)
fv(N∆)∩Γ = /0. It is easily seen, however, that these conditions can always be satisfied by choosing
anα-equivalent term, as it is the case for the7→ls rule of λlsub. Essentially, these rules re-formulate as
reduction rules theτ-transitions of the alternative presentation of theπ-calculus as a labeled transition
system, which is used to study the interaction of a process with its environment. Here, the new rules
are more convenient than labeled transitions, because onλ -terms there is no analogous of the transitions
whose label is notτ (andτ-transitions are defined using the non-τ transitions). This reformulation is
justified by the following lemma, whose proof is along the oneof the harmony lemma in [38] (p. 51).

Lemma 3.

1. ≡ is a strong bisimulation with respect to ⇒: P≡⇒⊗ Q iff P⇒⊗≡Q, and P≡⇒! Q iff P⇒!≡Q.

2. Harmony of ⇒ and →π : P →⊗ Q iff P⇒⊗≡ Q, and P→! Q iff P⇒!≡ Q.

Curiously, the first formulation of theπ-calculus was as a labeled transition system; the notions of
reduction and structural congruence were introduced by Milner only later on, to study the relationship
with theλ -calculus [33]. Our formulation at a distance of theπ-calculus—motivated in exactly the same
way—is a contribution of independent interest, probably the main one from theπ-calculus point of view.
It also shows that distance rules are a general syntactic principle whose relevance extends beyond explicit
substitutions.

3 The call-by-name encoding

As for the ordinaryλ -calculus, the translation fromλlsub to theπ-calculus is parametrized by a special
channel namea. Actually, we assume that thesespecial channel namesare taken from a setA which is
disjoint from the set of variable names, and whose elements are denoteda,b,c,d,

The translation is given by (on screen it is in red):

46 Evaluating functions as processes

JxKa := x〈a〉 JtsKa := νbνx(JtKb | b〈x,a〉 | !x(c).JsKc) x is fresh
Jλx.tKa := a(x,b).JtKb Jt[x/s]Ka := νx(JtKa | !x(b).JsKb)

Modulo minor details, this is the original call-by-name encoding given by Milner. With respect to the
relation with linear logic developed in [21], special namescorrespond exactly to multiplicative formulas,
while variable names correspond to exponential formulas.

An easy induction on the translation shows:

Lemma 4. Let t be a term. Thenfn(JtKa) = fv(t)⊎{a}.

To relate terms and processes we need to prove a property of the translation, concerning its action on
contexts: it maps evaluation contexts to non-guarding contexts of a special form.

Lemma 5 (RelatingE andN via J·Ka). Let ∆ be a set of variable names,E∆ an evaluation context, and
a a special name. There exist a set of namesΓ (possibly containing both variables and special names), a
non-blocking contextN∆⊎Γ and a special nameb s.t. JE∆LtMKa = N∆⊎ΓLJtKbM andΓ∩fv(t) = /0 for every
term t. Moreover, ifE∆ is a substitution contextL∆ thena= b, Γ = /0, andN∆ does not depend ona.

Proof. By induction onE∆. The base case is given by the empty contextE/0 = L · M, and it is trivial, just
takeΓ := /0, N /0 := L · M, andb= a. The inductive cases:

• Left of an application, E∆ = F∆s: if x is a fresh variable name:

JE∆LtMKa = JF∆LtMsKa = νdνx(JF∆LtMKd | d〈x,a〉 | !x(c).JsKc)

=i.h. νdνx(M∆⊎ΣLJtKbM | d〈x,a〉 | !x(c).JsKc) = N∆⊎Σ⊎{d,x}LJtKbM
By i.h. we get thatΣ∩fv(t) = /0. By definition of the translationx is fresh, sox /∈ fv(t). We then
conclude by takingΓ := Σ⊎{d,x}.

• Left of a substitution, E∆⊎{x} = F∆[x/s]:

JE∆⊎{x}LtMKa = JF∆LtM[x/s]Ka = νx(JF∆LtMKa | !x(c).JsKc)

=i.h. νx(M∆⊎ΓLJtKbM | !x(c).JsKc) = N∆⊎{x}⊎ΓLJtKbM
and thei.h. also givesΓ∩fv(t) = /0.

Now suppose thatE∆⊎{x} (and thusF∆) is a substitution contextL∆. Then byi.h. we getM∆ not
depending ona s.t.:

JE∆⊎{x}LtMKa = JF∆LtM[x/s]Ka = νx(JF∆LtMKa | !x(c).JsKc)

=i.h. νx(M∆LJtKaM | !x(c).JsKc) = N∆⊎{x}LJtKaM
Where clearlyN∆⊎{x} does not depend ona.

We can now proceed with the simulation.

Theorem 6(→π strongly simulates⊸ via J·Ka).

1. t ⊸dB s impliesJtKa ⇒⊗≡ JsKa.

2. t ⊸ls s impliesJtKa ⇒!≡ JsKa.

Proof. 1. Two cases:

• Root rewriting step: first withoutL∆L · M: (λx.M)N 7→dB M[x/N]

B. Accattoli 47

J(λx.t)sKa = νbνy(Jλx.tKb | b〈y,a〉 | !y(c).JsKc) = νbνy(b(x,e).JtKe | b〈y,a〉 | !y(c).JsKc)
⇒⊗ νbνy(JtKa{x/y} | !y(c).JsKc) =α νbνx(JtKa | !x(c).JsKc)
= νbJt[x/s]Ka ≡ Jt[x/s]Ka

The=α -step is justified by the fact thaty is introduced fresh in the first line. The≡ step is justified
by Lemma 4, for which the only free special name occurring inJtKa is a, and by Lemma 2.2, which
allow us to remove the uselessνb.

Now, if L∆Lλx.tMs 7→dB L∆Lt[x/s]M we get (some explanations follow):

JL∆Lλx.tMsKa = νbνy(JL∆Lλx.tMKb | b〈y,a〉 | !y(c).JsKc)

=Lem.5 νbνy(N∆LJλx.tKbM | b〈y,a〉 | !y(c).JsKc)

= νbνy(N∆Lb(x,e).JtKeM | b〈y,a〉 | !y(c).JsKc)
⇒⊗ νbνy(N∆LJtKa{x/y}{e/a}M | !y(c).JsKc)
=α νbνx(N∆LJtKaM | !x(c).JsKc)

≡Lem.2.1&Lem.2.3 νbN∆Lνx(JtKa | !x(c).JsKc)M
= νbN∆LJt[x/s]KaM

=Lem.5 νbJL∆[t[x/s]]Ka

≡Lem.4&Lem.2.2 JL∆[t[x/s]]Ka

The=α -step and the last step are justified as before. In the first application of ≡ we can apply
Lemma 2.1 because by hypothesisx /∈ ∆ andfv(s)∩∆ = /0, and Lemma 2.3 becausex /∈ fn(N∆).
The two applications of Lemma 5 are with respect to differentspecial namesa andb, but this is
sound: themoreoverpart of Lemma 5 guarantees that in the case of a substitution contextL∆ the
corresponding contextN∆ does not depend on the name.

• Inductive step: E∆LtM→dB E∆LsM becauset 7→dB s. Let us recall that by definitions reductions in the
π-calculus are closed by non-blocking contexts. Then:

JE∆LtMKa =Lem.5 N∆⊎ΓLJtKbM ⇒⊗ N∆⊎ΓLJsKbM =Lem.5 JE∆LsMKa

2. For→ls the inductive case is as for→dB. The base case isE∆LxM[x/s]⊸ls E∆LsM[x/s] with x /∈ ∆:

JE∆LxM[x/s]Ka = νx(JE∆LxMKa | !x(b).JsKb) =Lem.5 νx(N∆⊎ΓLJxKcM | !x(b).JsKb)
= νx(N∆⊎ΓLx〈c〉M | !x(b).JsKb) ⇒! νxN∆⊎ΓLJsKc | !x(b).JsKbM
≡Lem.2.1 νx(N∆⊎ΓLJsKcM | !x(b).JsKb) =Lem.5 νx(JE∆LsMKa | !x(b).JsKb)
= JE∆LsM[x/s]Ka

where the≡-step is justified by the fact that by hypothesis and by Lemma 5(x /∈ Γ) we get that(fv(s)⊎
{x,b})∩ (∆⊎Γ) = /0, and so we can apply Lemma 2.1.

The converse relation. To simulate process reductions onλ -terms we need a lemma, which is a con-
verse to Lemma 5.

Lemma 7. Let∆ andΓ be a set of variable names and a set of special names, respectively.

1. If JtKa = N∆⊎ΓLa(y,b).PM with a /∈ Γ thenΓ = /0 and exist s andL∆ s.t. P= JsKb and t= L∆Lλy.sM.
2. If JtKa = N∆⊎ΓLx〈c〉M with x /∈ ∆ then existΣ ⊆ ∆ andEΣ s.t. t= EΣLxM (and x/∈ Σ).

Proof. Both points are by induction ont:

• Variable:

48 Evaluating functions as processes

1. The hypothesis is false and there is nothing to prove.
2. By definition ofJ·Ka, taking the empty context (and∆ = /0).

• Abstraction:

1. By definition ofJ·Ka, taking the empty context (and∆ = /0).
2. The hypothesis is false and there is nothing to prove.

• Application: if t = ur thenJurKa = νbνz(JuKb | b〈z,a〉 | !z(c).JrKc) with z fresh.

1. By Lemma 4a /∈ fn(JuKb), and so there is no contextN∆⊎Γ s. t. JtKa = N∆⊎ΓLa(y,b).PM,
hence the hypothesis is false and there is nothing to prove.

2. It must be thatJuKa = M∆′⊎Γ′Lx〈c〉M with ∆ = ∆′⊎{z} andΓ = Γ′⊎{a}. Then byi.h. there
existΣ ⊆ ∆′ andFΣ s.t. u= FΣLxM. We conclude takingEΣ := FΣr.

• Substitution: if t = u[z/r] thenJu[z/r]Ka = νz(JuKa | !z(b).JrKb).

1. If JtKa = N∆⊎ΓLa(y,b).PM then it must be that existsM∆′⊎ΓL · M with ∆ = ∆′⊎{z} s.t. JuKb =
M∆′⊎ΓLa(y,b).PM andN∆⊎Γ = νz(M∆′⊎Γ | !z(b).JrKb). By i.h. we getΓ = /0, u= L′

∆′Lλy.sM,
andP= JsKb. We conclude takingL∆ := L′

∆′[z/r].
2. It must be thatJuKa = M∆′⊎Γ′Lx〈c〉M with ∆ = ∆′⊎{z} andΓ = Γ′⊎{a}. Then byi.h. there

existΣ′ ⊆ ∆′ andFΣ′ s.t.u=FΣ′LxM. We conclude takingΣ := Σ′⊎{z} andEΣ := FΣ′ [z/r].

Now, we can prove that any process reduction fromJtKa can be simulated byt.

Theorem 8(⊸ strongly simulates⇒ via J·Ka).

1. If JtKa ⇒⊗ Q then exists s s.t. t⊸dB s andJsKa ≡ Q.

2. If JtKa ⇒! Q then exists s s.t. t⊸ls s andJsKa ≡ Q.

Proof. Both points are by induction ont. Cases:

• Values: if t = x or t = λx.u thenJtKa cannot reduce.

• Application: if t = ur thenJtKa = νbνx(JuKb | b〈x,a〉 | !x(c).JrKc) with x fresh. Then:

1. Multiplicative reduction. Cases ofJtKa ⇒⊗ Q:
– Root: JuKb = N∆⊎ΓLb(y,d).PM with b /∈ (∆⊎Γ) and the process reduction is a⇒⊗ inter-

action withb〈x,a〉 onb. By Lemma 7.1 we get thatΓ = /0, u= L∆Lλy.u′M, andP= Ju′Kd.
Sot = L∆Lλy.u′Mr and thus it has a⊸dB-redex ony, which maps to the⇒⊗ communi-
cation onb exactly as in the proof of Theorem 6.1.

– Inductive: because ofJuKb ⇒⊗ R. Then byi.h. existsu′ s.t. u→dB u′ andJu′Kb ≡ R. We
conclude by takings := u′r.

2. Exponential reduction. JtKa ⇒! Q can only happen if reduction takes place inJuKb, because
x is fresh by hypothesis. In such a case we conclude using thei.h., as in the first sub-case of
the previous point.

• Substitution: if t = u[x/r] thenJtKa = νx(JuKa | !x(b).JrKb). We have:

1. Multiplicative reduction. JtKa ⇒⊗ Q can only happen if reduction takes place inJuKa, and we
conclude using thei.h..

2. Exponential reduction. If JtKa ⇒! Q because reduction takes place inJuKa we use thei.h..
Otherwise,JuKa = N∆⊎ΓLx〈c〉M with x /∈ ∆⊎Γ and the process reduction is a⇒! interaction
with !x(b).JrKb on x. By Lemma 7.2 there existΣ andEΣ s.t. u= EΣLxM. Sot = EΣLxM[x/r]
has a⊸ls redex onx, which maps to the⇒! communication onx exactly as in the proof of
Theorem 6.2.

B. Accattoli 49

According to the two theorems of this section, the relationship between the call-by-name strategy on
the ordinaryλ -calculus and the evaluation in theπ-calculus is the same as the relationship between the
call-by-name strategy and linear weak head reduction. In the strong case (i.e.when (head) reduction can
go under lambdas), it is known that the latter can be at most quadratically longer than the former [9].
The analysis in [9] does not depend on being weak or strong. Itfollows that the same upper bound holds
between the call-by-name strategy and its evaluation in theπ-calculus.

Last, it is easy to see that linear weak head reduction isdeterministic: every term has at most one⊸
redex, since every redex writes asE∆LvM (wherev is a value,i.e. a variable or an abstraction) and such a
decomposition is unique. This property accounts for what Milner callsdeterminacyof JtKa in [33].

4 The call-by-value encoding

We now show that the same exact relationship can be obtained with respect to call-by-value (CBV). The
CBV calculus in use here is not Plotkin’s calculusλβv. In [10] the author and Paolini introduced the
value substitution calculusλvsub, which is a CBV calculus with explicit substitutions containing λβv as a
sub-calculus and behaving better thanλβv with respect to the semantical notion ofsolvability. In [4, 5]
we showed thatλvsubhas a sub-calculus, thevalue substitution kernelλvker, which has two key properties:

1. Observational equivalence[4]: there is a translation·◦ : λvsub→ λvker s.t. t andt◦ are equivalent
with respect to observing any termination property.

2. Language for proof nets[5]: λvker is an algebraic reformulation of the proof nets corresponding to
the CBV translation ofλ -calculus into linear logic. Namely, there is a translation· : λvker → PN
which is a strong bisimulation.

Here, we are going to show a further property: there are a CBV analogous⊸v of linear weak head
reduction⊸ and a translation{|·|}x from λvker to the π-calculus which is a strong bisimulation with
respect to⊸v and⇒. Let us point out that in the untyped case there is a strong mismatch between
Plotkin’s calculusλβv and the evaluation in proof nets (see [4]), thus the results of this section do not
hold with respect toλβv (nor with any of its refinements with explicit substitutionswhereβ -redexes are
constrained to fire on values).

Thevalue substitution kernel λvker is given by the following grammar:

t,s,u, r ::= v | vt | t[x/s] v ::= x | λx.t

Please note that the left sub-term of an application can onlybe a value (see [4, 5] for more details).
Substitution contextsL∆ are defined as before. Instead, the language ofevaluation contextschanges:

E/0 ::= L · M | vE/0 | t[x/E/0] E∆⊎{x} ::= E∆[x/t] | vE∆⊎{x} | t[y/E∆⊎{x}]

Next, we defineapplicative contextsasA∆L · M ::= E∆LL · MtM. As for CBN, we do not define the full
calculus, but only the evaluation strategy.Linear weak applicative reduction, noted⊸v, is given by
the rewriting rules⊸vdB and⊸vls defined as the closure by evaluation contexts of the following rules:

(λx.t)s 7→dB t[x/s] A∆LxM[x/LΣLvM] 7→lsv LΣLA∆LvM[x/v]M x /∈ ∆

Note that the argument of aβ -redex is not required to be a value, while the substitution rule can fire only
in presence of a value (in a substitution context). As it was the case for the call-by-name calculus and
for theπ-calculus, one should also ask thatfv(v)∩∆ = /0, fv(A∆LxM)∩Σ = /0, and∆∩Σ = /0, but these
side-conditions can always be satisfied by taking anα-equivalent term, and so in the following they will
be taken for granted. Note thatx[x/y] 67→lsv y but(xz)[x/y] 7→lsv yz, because substitution has to take place

50 Evaluating functions as processes

in an applicative context. This applicative restriction isa sort of converse to the head restriction used in
the case of call-by-name evaluation. In terms of proof nets both these restrictions correspond to forbid
reduction of cuts involving links in some !-boxes (with respect to the respective encodings of CBV and
CBN), while theweakrequirement correspond to the analogous constraint with respect to thè -boxes
mentioned in the introduction. The applicative restriction is somehow a surprise, which is justified by
the fact that it matches what happens in theπ-calculus. It is a quite reasonable restriction: there is no
point in substituting a value if it cannot be used in some application.

Linear weak applicative reduction enjoys a property which is the CBV analogous of the subterm
porperty (deifned at the end of Section 1). Let us call av-subterma subterm which is a value.

Lemma 9 (v-subterm property). If t ⊸k
v s and v is a v-subterm of s then v is a v-subterm of t.

Proof. By induction onk. Fork= 0 it is trivial, for k> 0 consider the termu s.t. u⊸v s. The⊸vdB rule
does not create new values. The⊸vls rule duplicates a v-subterm ofu, which byi.h. is a v-subterm oft,
and it does not substitute into v-subterms. So, any v-subterm of s is a v-subterm oft.

Differently from linear weak head reduction, linear weak applicative reduction is anon-deterministic
stretegy: just considert = ((λx.x)(yy))[y/z], which has two redexes. However, a simple induction shows
that reduction is confluent: there is no need to use parallel reductions or other sophisticated techniques
because no redex can duplicate/erase other redexes. In fact, it is easily seen that linear weak applicative
reduction enjoys the diamond property. This fact corresponds to what Milner callsdeterminacyof the
CBV encoding.

The translation. Similarly to the CBV translation of theλ -calculus to linear logic, the CBV transla-
tion to theπ-calculus uses an auxiliary function. The main translationfunction{|t|}x is parametrized by a
variable namex /∈ fv(t) (and not by a special name) and the auxiliary function is noted {|·|}a, i.e. we use
the same symbol but now the parameter is a special namea:

{|v|}x ::= !x(a).{|v|}a {|vs|}x ::= νbνy({|v|}b | b〈y,x〉 | {|s|}y) y is fresh
{|y|}a ::= y〈a〉 {|s[y/u]|}x ::= νy({|s|}x | {|u|}y)

{|λy.s|}a ::= a(y,z).{|s|}z

Note that the application case uses the auxiliary function on v. Note also the difference with the call-by-
name case: applications and explicit substitutions do not use replication, which is instead associated to
values, with the important exception of applied values. Theapplicativerestriction on the strategy⊸v

comes from this exception: the impossibility of interacting under replication in theπ-calculus reflects on
terms as the fact that one can substitute only on variables inapplicative contexts, because the others are
under a replication prefix. Last, this encoding is a minor variation over the CBV one in [39], which is
not Milner’s original CBV encoding.

Lemma 10. Let t∈ λvker. Thenfn({|t |}x) = fv(t)⊎{x} andfn({|t|}a) = fv(t)⊎{a}.

Proof. By mutual induction on{|t |}x and{|t |}a.

The following lemma is the call-by-value analogous of Lemma5.

Lemma 11(RelatingE andN via {|·|}x). Let ∆ be a set of variable names, x a variable name andE∆ an
evaluation context. There exist a set of namesΓ (possibly containing both variables and special names),
a non-blocking contextN∆⊎Γ, and a variable name z s.t.{|E∆LtM|}x = N∆⊎ΓL{|t|}zM and Γ∩ fv(t) = /0 for
every term t. Moreover, ifE∆ is a substitution contextL∆ then x= z, Γ = /0, andN∆ does not depend on
x.

B. Accattoli 51

Proof. By induction onE∆. The base case is given by the empty contextE/0 = L · M, and it is trivial, just
takeΓ := /0, N /0 := L · M, andz := x. The inductive cases:

• Right of an application, E∆ = vF∆:

{|E∆LtM|}x = {|vF∆LtM|}x = νbνy({|v|}b | b〈y,x〉 | {|F∆LtM|}y)

=i.h. νbνy({|v|}b | b〈y,x〉 | M∆⊎ΣL{|t |}zM) = N∆⊎Σ⊎{y,b}L{|t|}zM
The i.h. also givesΣ∩ fv(t) = /0. Sinceb,y /∈ fv(t) it follows that Γ := Σ⊎{y,b} satisfiesΓ∩
fv(t) = /0.

• Right of a substitution, E∆ = s[y/F∆]:

{|E∆LtM|}x = {|s[y/F∆LtM]|}x = νy({|s|}x | {|F∆LtM|}y)
=i.h. νy({|s|}x | M∆⊎ΣL{|t|}zM) = N∆⊎Σ⊎{y}L{|t|}zM

Thei.h. also givesΣ∩fv(t) = /0. Sincey /∈ fv(t) it follows thatΓ := Σ⊎{y} satisfiesΓ∩fv(t) = /0.

• Left of a substitution, E∆⊎{z} = F∆[y/u]. Then:

{|E∆⊎{y}LtM|}x = {|F∆LtM[y/u]|}x = νy({|F∆LtM|}x | {|u|}y)
=i.h. νy(M∆⊎ΓL{|t|}zM | {|u|}y) = N∆⊎{y}⊎ΓL{|t|}zM

The i.h. also givesΓ∩fv(t) = /0. Now, suppose thatE∆⊎{y} (and thusF∆) is a substitution context
L∆. Then byi.h. we getM∆ not depending onx s.t.:

{|E∆⊎{y}LtM|}x = {|F∆LtM[y/u]|}x = νy({|F∆LtM|}x | {|u|}y)

=i.h. νy(M∆L{|t|}xM | {|u|}y) = N∆⊎{y}L{|t|}xM
where clearlyN∆⊎{y} does not depend onx.

Theorem 12(→π strongly simulates⊸v).
1. t ⊸vdB s implies{|t|}x ⇒⊗≡ {|s|}x.

2. t ⊸vls s implies{|t|}x ⇒!≡ {|s|}x.

Proof. We show the base cases, the inductive ones are as in the call-by-name case, using Lemma 11.
1. If (λy.t)s⊸vdB t[y/s] then:

{|(λy.t)s|}x = νbνz({|λy.t |}b | b〈z,x〉 | {|s|}z) = νbνy(b(y,w).{|t |}w | b〈z,x〉 | {|s|}z)
⇒⊗ νbνy({|t |}w{w/x}{y/z} | {|s|}z) =α νbνy({|t |}x | {|s|}y)
= νb{|t[x/s]|}x ≡Lem.10 {|t[x/s]|}x

2. If A∆LyM[y/LΣLvM] 7→lsv LΣLA∆LvM[y/v]M andA∆L · M = E∆LL · MsM then:

{|A∆LyM[y/LΣLvM]|}x = νy({|E∆LysM|}x | {|LΣLvM|}y)
=Lem.11 νy(N∆⊎ΓL{|ys|}zM | MΣL{|v|}yM)
= νy(N∆⊎ΓL{|ys|}zM | MΣL!y(a).{|v|}aM)
= νy(N∆⊎ΓLνbνw({|y|}b | b〈w,z〉 | {|s|}w)M | MΣL!y(a).{|v|}aM)
= νy(N∆⊎ΓLνbνw(y〈b〉 | b〈w,z〉 | {|s|}w)M | MΣL!y(a).{|v|}aM)
⇒! νyMΣLN∆⊎ΓLνbνw({|v|}b | !y(a).{|v|}a | b〈w,z〉 | {|s|}w)MM
≡Lem.2.1 νyMΣLN∆⊎ΓLνbνw({|v|}b | b〈w,z〉 | {|s|}w)M | !y(a).{|v|}aM
= νyMΣLN∆⊎ΓL{|vs|}zM | !y(a).{|v|}aM
= νyMΣL{|E∆LvsM|}x | !y(a).{|v|}aM
≡Lem.2.3 MΣLνy({|E∆LvsM|}x | !y(a).{|v|}a)M
= MΣL{|E∆LvsM[y/v]|}xM
=Lem.11 {|LΣLE∆LvsM[y/v]M|}x

= {|LΣLA∆LvM[y/v]M|}x

52 Evaluating functions as processes

The ≡ step after the reduction is justified by the fact thatb, w, and all the variables inΓ are
introduced fresh and so do not belong tofv(v). Moreover,∆∩fv(v) = /0 by hypothesis,and so we
can apply Lemma 2.1.

The converse relation. As for call-by-name, we show that linear weak applicative reduction reflects
exactly evaluation in theπ-calculus.

Lemma 13. Let ∆ andΓ be a set of variable names and a set of special names, respectively. Then:

1. If {|t|}x = N∆⊎ΓL!x(a).PM with x /∈ ∆ thenΓ = /0 and exist v andL∆ s.t. P= {|v|}a and t= L∆LvM.
2. If {|t|}x = N∆⊎ΓLy〈a〉M with y /∈ ∆ then existΣ ⊆ ∆ andAΣ s.t. t= AΣLyM.

Proof. Both points are by induction ont:

• Value: if t = v′ then{|t|}x =!x(a).{|v′|}a.

1. ClearlyΓ = ∆ = /0, v is v′, andL∆ is the empty context.

2. The hypothesis is false, and so there is nothing to prove.

• Application: if t = v′s then{|v′s|}x = νbνz({|v′|}b | b〈z,x〉 | {|s|}z) with zandb are fresh.

1. By definition of the translationx /∈ fv(v′s) and so by Lemma 10x /∈ fn({|v′|}b)∪ fn({|s|}z).
Consequently, there is no contextN∆⊎Γ s. t.{|t|}x = N∆⊎ΓL!x(a).PM, so the hypothesis is false
and there is nothing to prove.

2. Two cases:
(a) {|v′|}b = y〈a〉 andN∆⊎Γ = νbνz(L · M | b〈z,x〉 | {|s|}z), which implyv′ = y, a= b, ∆ = {z},

andΓ = {b}. We conclude takingΣ := /0 andA/0 := L · Ms.
(b) The context holeL ·M is in {|s|}z. Let ∆′ := ∆\{z} andΓ′ := Γ\{b}. If {|t |}x = N∆⊎ΓLz〈a〉M

then{|s|}x = M∆′⊎Γ′Lz〈a〉M for some contextM∆′⊎Γ′ . Thei.h. givesΣ ⊆ ∆′ and an applica-
tive contextBΣ s.t. s= BΣLyM. We conclude takingAΣ := v′BΣ.

• Substitution: if t = s[z/u] then{|t|}x = νz({|s|}x | {|u|}z).

1. By definition of the translationx /∈ fv(s[z/u]) and so by Lemma 10x ∈ fn({|s|}x) andx /∈
fn({|u|}z). Consequently, the context holeL ·M is in {|s|}x, which then writes asM∆′⊎ΓL!x(a).PM,
with ∆ = ∆′ ⊎ {z} for some contextM∆′⊎Γ. By i.h. we get that there existv and L′

∆′ s.t.
P= {|v|}a ands= L′

∆′LvM. We conclude takingL∆ := L′
∆′[z/u].

2. Two cases:
(a) The context holeL · M is in {|s|}x. Let ∆′ := ∆ \ {z}. If {|t|}x = N∆⊎ΓLz〈a〉M then{|s|}x =

M∆′⊎ΓLz〈a〉M for some contextM∆′⊎Γ. The i.h. givesΣ′ ⊆ ∆′ and an applicative context
BΣ′ s.t. s= BΣ′LyM. We conclude takingΣ := Σ′⊎{z} andAΣ := BΣ′ [z/u].

(b) The context hole is in{|u|}z. Analogous to the previous case (except thatΣ = Σ′).

Theorem 14(⊸v strongly simulates⇒ via {|·|}a).

1. If {|t|}x ⇒⊗ Q then exists r s.t. t⊸vdB r and{|r |}x ≡ Q.

2. If {|t|}x ⇒! Q then exists r s.t. t⊸vls r and{|r |}x ≡ Q.

Proof. By induction ont. Cases:

• Values: if t is a value then{|t|}x cannot reduce.

• Application: if t = vsthen{|vs|}x = νbνy({|v|}b | b〈y,x〉 | {|s|}y) with y andb fresh. Then:

B. Accattoli 53

1. Multiplicative reduction. Cases ofJtKx ⇒⊗ Q:
– Root: {|v|}b = b(z,w).P interacts withb〈y,x〉 on b. Clearly,v is an abstractionλz.u with

{|u|}w = P, andt = (λz.u)shas a root⊸vdB redex. Then,t and{|t|}x are related exactly as
in the proof of Theorem 12.1. Note thatb /∈ fn({|s|}y) by Lemma 10, and so there cannot
be any multiplicative root interaction involving{|s|}y.

– Inductive: {|t|}x ⇒⊗ Q because{|s|}y ⇒⊗ P. By i.h. we get that there existsr ′ s.t. s→dB r ′

and{|r ′|}y ≡ P. SincevL · M is an evaluation contexts, takingr := vr′ we gett →dB r and
{|r |}x ≡ P.

2. Exponential reduction. The inductive case (i.e. {|t|}x ⇒! Q because{|s|}y ⇒⊗ P) follows by
the i.h. as in the inductive case for multiplicative reductions. In the root case there cannot be
any root exponential reduction. Indeed,{|v|}b would have to bez〈b〉 and{|s|}y should have a
!z(c).P sub-process. This second requirement is only possible ifs contains a valuev which
in {|s|}y is translated with respect toz, so that{|v|}z =!z(c).P. But this is impossible becausey
is fresh (and soy 6= z) and any variable name which is used as a parameter in the translation
of a subterm ofs is eithery or it is introduced fresh (and so cannot be equal toz).

• Substitution: if t = {|s[y/u]|}x then{|t|}x = νy({|s|}x | {|u|}y)

1. Multiplicative reduction. If the reduction takes place in{|s|}x or {|u|}y we use thei.h. as in the
previous inductive cases. And there cannot be any root multiplicative reduction. Indeed, it
should be along a special namea free in both{|s|}x and{|u|}y, but by Lemma 10{|s|}x and{|u|}y

have no free special name.
2. Exponential reduction. If the reduction takes place in{|s|}x or {|u|}y we use thei.h. as in the

previous inductive cases.
Otherwise, an exponential reduction can only be along a variable namezwhich is free in both
{|s|}x and{|u|}y. Thenz 6= x, becausex /∈ fn({|u|}y). Another requirement is thatz has to be
used as the parameter of the translation of a valuev, which is the only way to get a replicated
input. The only possibility then is thatz= y, because all variable parameter names used in
the translation and different fromx andy are fresh and cannot be in both{|s|}x and{|u|}y.
Now, {|s|}x has to be of the formN∆⊎ΓLy〈a〉M and{|u|}y has to be of the formM∆′⊎Γ′L!y(b).PM,
for some sets of variable names∆ and∆′ and some sets of special namesΓ andΓ′, and with
y /∈ ∆∪∆′. By Lemma 13 we getΓ′ = /0 and that existv, L∆′, Σ ⊂ ∆, andAΣ s.t. P= {|v|}b,
u= L∆′LvM, ands= AΣLyM. Summing up,t = AΣLyM[y/L∆′LvM] and it has a⊸vls redex which
maps onJtKx ⇒! Q exactly as in the proof of Theorem 12.2.

Conclusions

We have shown how to refine the relation between theλ -calculus and theπ-calculus, getting a perfect
match of reductions steps in both call-by-name and call-by-value. The refinements crucially exploits
rewriting rules at a distance, and unveil that theπ-calculus evaluatesλ -terms exactly as linear logic
proof nets. A natural continuation would be to extend these relations to calculi with multiplicities [14],
which are related to the study of observational equivalence. It would also be interesting to investigate
linear weak applicative reduction, in particular in relation with complexity [9] or with Taylor-Ehrhard
expansion [22]. Finally, given the compactness of the results and the involved reasoning about bound,
free, and fresh variables, it would be interesting to try to formalize this work in Abella [25], which is a
proof assistant provided with a nominal quantifier precisely developed to cope with theπ-calculus [32]
and where reasoning about untyped calculi with binders is very close to pen-and-paper reasoning [6].

54 Evaluating functions as processes

References

[1] Samson Abramsky (1993):Computational Interpretations of Linear Logic. Theor. Comput. Sci.111(1&2),
pp. 3–57. Available athttp://dx.doi.org/10.1016/0304-3975(93)90181-R.

[2] Beniamino Accattoli (2011):Jumping around the box: graphical and operational studies on λ -calculus and
Linear Logic. PhD thesis,La SapienzaUniversity of Rome.

[3] Beniamino Accattoli (2012):An Abstract Factorization Theorem for Explicit Substitutions. In: RTA, pp.
6–21. Available athttp://dx.doi.org/10.4230/LIPIcs.RTA.2012.6.

[4] Beniamino Accattoli (2012):A linear analysis of call-by-valueλ -calculus. Available at the address
https://sites.google.com/site/beniaminoaccattoli/Accattoli-Alinearanalysisofcall-by-valuelambdacalc

[5] Beniamino Accattoli (2012):Proof nets and the call-by-valueλ -calculus. LSFA 2012. Available at the ad-
dresshttps://sites.google.com/site/beniaminoaccattoli/Accattoli-Proofnetsandthecallbyvaluelambdacalc

[6] Beniamino Accattoli (2012):Proof Pearl: Abella Formalization ofλ -Calculus Cube Property. In: CPP, pp.
173–187. Available athttp://dx.doi.org/10.1007/978-3-642-35308-6_15.

[7] Beniamino Accattoli & Stefano Guerrini (2009):Jumping Boxes. In: CSL, pp. 55–70. Available at
http://dx.doi.org/10.1007/978-3-642-04027-6_7.

[8] Beniamino Accattoli & Delia Kesner (2010):The Structuralλ -Calculus. In: CSL, pp. 381–395. Available
athttp://dx.doi.org/10.1007/978-3-642-15205-4_30.

[9] Beniamino Accattoli & Ugo Dal Lago (2012):On the Invariance of the Unitary Cost Model for Head Reduc-
tion. In: RTA, pp. 22–37. Available athttp://dx.doi.org/10.4230/LIPIcs.RTA.2012.22.

[10] Beniamino Accattoli & Luca Paolini (2012):Call-by-Value Solvability, revisited. In: FLOPS, pp. 4–16.
Available athttp://dx.doi.org/10.1007/978-3-642-29822-6_4.

[11] Emmanuel Beffara (2006):A Concurrent Model for Linear Logic. Electr. Notes Theor. Comput. Sci.155,
pp. 147–168. Available athttp://dx.doi.org/10.1016/j.entcs.2005.11.055.

[12] Gianluigi Bellin & Philip J. Scott (1994):On the pi-Calculus and Linear Logic. Theor. Comput. Sci.135(1),
pp. 11–65. Available athttp://dx.doi.org/10.1016/0304-3975(94)00104-9.

[13] Gérard Boudol (1998):Theπ-Calculus in Direct Style. Higher-Order and Symbolic Computation11(2), pp.
177–208. Available athttp://dx.doi.org/10.1023/A:1010064516533.

[14] Gérard Boudol & Cosimo Laneve (1996): The Discriminating Power of Multiplic-
ities in the Lambda-Calculus. Inf. Comput. 126(1), pp. 83–102. Available at
http://dx.doi.org/10.1006/inco.1996.0037.

[15] Luı́s Caires & Frank Pfenning (2010):Session Types as Intuitionistic Linear Propositions. In: CONCUR,
pp. 222–236. Available athttp://dx.doi.org/10.1007/978-3-642-15375-4_16.

[16] Matteo Cimini, Claudio Sacerdoti Coen & Davide Sangiorgi (2010): Functions as Pro-
cesses: Termination and theλ µµ̃-Calculus. In: TGC, pp. 73–86. Available at
http://dx.doi.org/10.1007/978-3-642-15640-3_5.

[17] Pierre Clairambault (2011):Estimation of the Length of Interactions in Arena Game Semantics. In: FOS-
SACS, pp. 335–349. Available athttp://dx.doi.org/10.1007/978-3-642-19805-2_23.

[18] Vincent Danos, Hugo Herbelin & Laurent Regnier (1996):Game Semantics & Abstract Machines. In: LICS,
pp. 394–405. Available athttp://doi.ieeecomputersociety.org/10.1109/LICS.1996.561456.

[19] Vincent Danos & Laurent Regnier (1999): Reversible, Irreversible and Opti-
mal lambda-Machines. Theor. Comput. Sci. 227(1-2), pp. 79–97. Available at
http://dx.doi.org/10.1016/S0304-3975(99)00049-3.

[20] Vincent Danos & Laurent Regnier (2004):Head Linear Reduction. Technical Report.

[21] Henry DeYoung, Luı́s Caires, Frank Pfenning & BernardoToninho (2012): Cut Reduction in Lin-
ear Logic as Asynchronous Session-Typed Communication. In: CSL, pp. 228–242. Available at
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.228.

B. Accattoli 55

[22] Thomas Ehrhard (2012):Collapsing non-idempotent intersection types. In: CSL, pp. 259–273. Available at
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.259.

[23] Thomas Ehrhard & Olivier Laurent (2010):Interpreting a finitary pi-calculus in differential interaction nets.
Inf. Comput.208(6), pp. 606–633. Available athttp://dx.doi.org/10.1016/j.ic.2009.06.005.

[24] Thomas Ehrhard & Laurent Regnier (2006):Böhm Trees, Krivine’s Machine and the Taylor Expansion of
Lambda-Terms. In: CiE, pp. 186–197. Available athttp://dx.doi.org/10.1007/11780342_20.

[25] Andrew Gacek (2008):The Abella Interactive Theorem Prover (System Description). In: IJCAR, pp. 154–
161. Available athttp://dx.doi.org/10.1007/978-3-540-71070-7_13.

[26] Jean-Yves Girard (1987):Linear Logic. Theoretical Computer Science50, pp. 1–102. Available at
http://dx.doi.org/10.1016/0304-3975(87)90045-4.

[27] Kohei Honda & Olivier Laurent (2010): An exact correspondence between a typed pi-calculus
and polarised proof-nets. Theor. Comput. Sci.411(22-24), pp. 2223–2238. Available at
http://dx.doi.org/10.1016/j.tcs.2010.01.028.

[28] John Maraist, Martin Odersky, David N. Turner & Philip Wadler (1999): Call-by-name, Call-by-value,
Call-by-need and the Linear lambda Calculus. Theor. Comput. Sci.228(1-2), pp. 175–210. Available at
http://dx.doi.org/10.1016/S0304-3975(98)00358-2.

[29] Gianfranco Mascari & Marco Pedicini (1994):Head Linear Reduction and Pure Proof Net Extraction. Theor.
Comput. Sci.135(1), pp. 111–137. Available athttp://dx.doi.org/10.1016/0304-3975(94)90263-1.

[30] Damiano Mazza (2003):Pi et Lambda. Unéetude sur la traduction des lambda-termes dans le pi-calcul.
Memoire de DEA (in french).

[31] Dale Miller (1992):The pi-Calculus as a Theory in Linear Logic: Preliminary Results. In: ELP, pp. 242–264.
Available athttp://dx.doi.org/10.1007/3-540-56454-3_13.

[32] Dale Miller & Alwen Tiu (2010): Proof search specifications of bisimulation and
modal logics for the π-calculus. ACM Trans. Comput. Log. 11(2). Available at
http://doi.acm.org/10.1145/1656242.1656248.

[33] Robin Milner (1992):Functions as Processes. Math. Str. in Comput. Sci.2(2), pp. 119–141. Available at
http://dx.doi.org/10.1017/S0960129500001407.

[34] Robin Milner (2007):Local Bigraphs and Confluence: Two Conjectures. Electr. Notes Theor. Comput. Sci.
175(3), pp. 65–73. Available athttp://dx.doi.org/10.1016/j.entcs.2006.07.035.

[35] Gordon D. Plotkin (1975):Call-by-Name, Call-by-Value and the lambda-Calculus. Theor. Comput. Sci.1(2),
pp. 125–159. Available athttp://dx.doi.org/10.1016/0304-3975(75)90017-1.

[36] Davide Sangiorgi (1994):The Lazy Lambda Calculus in a Concurrency Scenario. Inf. Comput.111(1), pp.
120–153. Available athttp://dx.doi.org/10.1006/inco.1994.1042.

[37] Davide Sangiorgi (1999):From lambda to pi; or, Rediscovering continuations. Math. Str. in Comput. Sci.
9(4), pp. 367–401. Available athttp://dx.doi.org/10.1017/S0960129599002881.

[38] Davide Sangiorgi & David Walker (2001):The Pi-Calculus - a theory of mobile processes. Cambridge
University Press.

[39] Bernardo Toninho, Luı́s Caires & Frank Pfenning (2012): Functions as Session-Typed Processes. In: FoS-
SaCS, pp. 346–360. Available athttp://dx.doi.org/10.1007/978-3-642-28729-9_23.

[40] Vasco Thudichum Vasconcelos (2005):Lambda and pi calculi, CAM and SECD machines. J. Funct. Program.
15(1), pp. 101–127. Available athttp://dx.doi.org/10.1017/S0956796804005386.

R. Echahed and D. Plump (Eds.): 7th International Workshop on
Computing with Terms and Graphs
EPTCS 110, 2013, pp. 56–73, doi:10.4204/EPTCS.110.7

© C. Grabmayer & J. Rochel
This work is licensed under the
Creative Commons Attribution License.

Term Graph Representations for Cyclic Lambda-Terms∗
Clemens Grabmayer
Department of Philosophy

Utrecht University
The Netherlands

clemens@phil.uu.nl

Jan Rochel
Department of Computing Sciences

Utrecht University
The Netherlands

jan@rochel.info

We study various representations for cyclic λ -terms as higher-order or as first-order term graphs.
We focus on the relation between ‘λ -higher-order term graphs’ (λ -ho-term-graphs), which are first-
order term graphs endowed with a well-behaved scope function, and their representations as ‘λ -term-
graphs’, which are plain first-order term graphs with scope-delimiter vertices that meet certain scop-
ing requirements. Specifically we tackle the question: Which class of first-order term graphs admits a
faithful embedding of λ -ho-term-graphs in the sense that (i) the homomorphism-based sharing-order
on λ -ho-term-graphs is preserved and reflected, and (ii) the image of the embedding corresponds
closely to a natural class (of λ -term-graphs) that is closed under homomorphism?

We systematically examine whether a number of classes of λ -term-graphs have this property, and
we find a particular class of λ -term-graphs that satisfies this criterion. Term graphs of this class are
built from application, abstraction, variable, and scope-delimiter vertices, and have the characteristic
feature that the latter two kinds of vertices have back-links to the corresponding abstraction.

This result puts a handle on the concept of subterm sharing for higher-order term graphs, both
theoretically and algorithmically: We obtain an easily implementable method for obtaining the maxi-
mally shared form of λ -ho-term-graphs. Furthermore, we open up the possibility to pull back proper-
ties from first-order term graphs to λ -ho-term-graphs, properties such as the complete lattice structure
of bisimulation equivalence classes with respect to the sharing order.

1 Introduction

Cyclic lambda-terms typically represent infinite λ -terms. In this paper we study term graph representa-
tions of cyclic λ -terms and their respective notions of homomorphism, or functional bisimulation.

The context in which the results presented in this paper play a central role is our research on sub-
term sharing as present in terms of languages such as the λ -calculus with letrec [8, 1], with recursive
definitions [2], or languages with µ-recursion [3], and our interest in describing maximal sharing in such
settings. Specifically we want to obtain concepts and methods as follows:

• an efficient test for term equivalence with respect to α-renaming and unfolding;
• a notion of ‘maximal subterm sharing’ for terms in the respective language;
• the efficient computation of the maximally shared form of a term;
• a sharing (pre-)order on unfolding-equivalent terms.

Now our approach is to split the work into a part that concerns properties specific to concrete languages,
and into a part that deals with aspects that are common to most of the languages with constructs for
expressing subterm sharing. To this end we set out to find classes of term graphs that facilitate faithful
interpretations of terms in such languages as (higher-order, and eventually first-order) term graphs, and
that are ‘well-behaved’ in the sense that maximally shared term graphs do always exist. In this way the
∗This work was started, and in part carried out, within the framework of the project NWO project Realising Optimal Sharing

(ROS), project number 612.000.935, under the direction of Vincent von Oostrom and Doaitse Swierstra.

C. Grabmayer & J. Rochel 57

task can be divided into two parts: an investigation of sharing for term graphs with higher-order features
(the aim of this paper), and a study of language-specific aspects of sharing (the aim of a further paper).

Here we study a variety of classes of term graphs for denoting cyclic λ -terms, term graphs with
higher-order features and their first-order ‘implementations’. All higher-order term graphs we consider
are built from three kinds of vertices, which symbolize applications, abstractions, and variable occur-
rences, respectively. They also carry features that describe notions of scope, which are subject to certain
conditions that guarantee the meaningfulness of the term graph (that a λ -term is denoted), and in some
cases are crucial to define binding. The first-order implementations do not have these additional features,
but they may contain scope-delimiter vertices.

In particular we study the following three kinds (of classes) of term graphs:
λ -Higher-order-term-graphs (Section 3) are extensions of first-order term graphs by adding a scope

function that assigns a set of vertices, its scope, to every abstraction vertex. There are two variants,
one with and one without an edge (a back-link) from each variable occurrence to its corresponding
abstraction vertex. The class with back-links is related to higher-order term graphs as defined by
Blom in [4], and in fact is an adaptation of that concept for the purpose of representing λ -terms.

Abstraction-prefix based λ -higher-order-term-graphs (Section 4) do not have a scope function but as-
sign, to each vertex w, an abstraction prefix consisting of a word of abstraction vertices that in-
cludes those abstractions for which w is in their scope (it actually lists all abstractions for which w
is in their ‘extended scope’ [6]). Abstraction prefixes are aggregations of scope information that is
relevant for and locally available at individual vertices.

λ -Term-graphs with scope delimiters (Section 5) are plain first-order term graphs intended to represent
higher-order term graphs of the two sorts above, and in this way stand for λ -terms. Instead of
relying upon additional features for describing scopes, they use scope-delimiter vertices to signify
the end of scopes. Variable occurrences as well as scoping delimiters may or may not have back-
links to their corresponding abstraction vertices.

Each of these classes induces a notion of homomorphism (functional bisimulation) and bisimulation.
Homomorphisms increase sharing in term graphs, and in this way induce a sharing order. They preserve
the unfolding semantics of term graphs1, and therefore are able to preserve λ -terms that are denoted by
term graphs in the unfolding semantics. Term graphs from the classes we consider always represent finite
or infinite λ -terms, and in this sense are not ‘meaningless’. But this is not shown here. Instead, we lean
on motivating examples, intuitions, and the concept of higher-order term graph from [4].

We establish a bijective correspondence between the former two classes, and a correspondence be-
tween the latter two classes that is ‘almost bijective’ (bijective up to sharing or unsharing of scope
delimiter vertices). All of these correspondences preserve and reflect the sharing order. Furthermore,
we systematically investigate which specific class of λ -term-graphs is closed under homomorphism and
renders the mentioned correspondences possible. We prove (in Section 6) that this can only hold for a
class in which both variable-occurrence and scope-delimiter vertices have back-links to corresponding
abstractions, and establish (in Section 7) that the subclass containing only λ -term-graphs with eager
application of scope-closure satisfies these properties. For this class the correspondences allow us:

• to transfer properties known for first-order term graphs, such as the existence of a maximally
shared form, from λ -term-graphs to the corresponding classes of higher-order λ -term-graphs;

• to implement maximal sharing for higher-order λ -term-graphs (with eager scope closure) via
bisimulation collapse of the corresponding first-order λ -term-graphs (see algorithm in Section 8).

We stress that this paper in its present form is only a report about work in progress, and, while a
number of proofs are included, predominantly has the character of an extended abstract.

1While this is well-known for first-order term graphs, it can also be proved for the higher-order term graphs considered here.

58 Term Graph Representations for Cyclic Lambda-Terms

2 Preliminaries

By N we denote the natural numbers including zero. For words w over an alphabet A we denote the
length of w by ∣w∣. For a function f ∶ A→ B we denote by dom(f) the domain, and by im(f) the image
of f ; and for A0 ⊆ A we denote by f ∣A0

the restriction of f to A0.
Let Σ be a signature with arity function ar ∶ Σ→ N. A term graph over Σ is a tuple ⟨V, lab,args,r⟩

where V is a set of vertices, lab ∶V → Σ the (vertex) label function, args ∶V →V∗ the argument function
that maps every vertex v to the word args(v) consisting of the ar(lab(v)) successor vertices of v (hence
it holds ∣args(v)∣ = ar(lab(v))), r, the root is a vertex in V , and where every vertex is reachable from
the root (by a path that arises by repeatedly going from a vertex to one of its successors). (Note this
reachability condition, and mind the fact that term graphs may have infinitely many vertices.) By a
Σ-term-graph we mean a term graph over Σ. And by TG(Σ) we mean the class of all term graphs over Σ.

Let G be a term graph over signature Σ. As useful notation for picking out any vertex or the i-th
vertex from among the ordered successors of a vertex v in G we define the (not indexed) edge relation↣ ⊆V ×V , and for each i ∈N the indexed edge relation ↣i ⊆V ×V , between vertices by stipulating that:

w↣i w′ ∶ ⇐⇒ ∃w0, . . . ,wn ∈V . args(w) =w0 . . .wn ∧ w′ =wi

w↣w′ ∶ ⇐⇒ ∃i ∈N. w↣i w′
holds for all w,w′ ∈V . We write w f↣i w′ if w↣i w′ ∧ lab(w)= f holds for w,w′ ∈V , i ∈N, f ∈Σ, to indicate
the label at the source of an edge. A path in G is a tuple of the form ⟨w0,k0,w1,k1,w2, . . . ,wn−1,kn−1,wn⟩
where w0, . . . ,wn ∈V and n,k0,k1, . . . ,kn−1 ∈N such that w0 ↣k0 w1 ↣k1 w2 ⋯ wn−1 ↣kn−1 wn holds; paths
will usually be denoted in the latter form, using indexed edge relations. An access path of a vertex w of
G is a path that starts at the root of G, ends in w, and does not visit any vertex twice. Note that every
vertex w has at least one access path: since every vertex in a term graph is reachable from the root, there
is a path π from r to w; then an access path of w can be obtained from π by repeatedly cutting out cycles,
that is, parts of the path between different visits to one and the same vertex.

In the sequel, let G1 = ⟨V1, lab1,args1,r1⟩, G2 = ⟨V2, lab2,args2,r2⟩ be term graphs over signature Σ.
A homomorphism, also called a functional bisimulation, from G1 to G2 is a morphism from the

structure ⟨V1, lab1,args1,r1⟩ to the structure ⟨V2, lab2,args2,r2⟩, that is, a function h ∶V1 →V2 such that,
for all v ∈V1 it holds:

lab1(v) = lab2(h(v)) (labels)
h̄(args1(v)) = args2(h(v)) (arguments)

h(r1) = r2 (roots)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(1)

where h̄ is the homomorphic extension of h to words over V1, that is, to the function h̄ ∶ V∗
1 → V∗

2 ,
v1 . . .vn ↦ h(v1) . . .h(vn). In this case we write G1 →h G2, or G2 ←h G1. And we write G1 → G2, or
for that matter G2←G1, if there is a homomorphism (a functional bisimulation) from G1 to G2.

Let f ∈ Σ. We write G1 →f G2 or G2 ←f G1 if there is a homomorphism h between G1 and G2 with
the property that for all w1,w2 ∈V1 with w1 ≠w2 it holds that h(w1) = h(w2) ⇒ lab1(w1) = lab1(w2) = f,
that is, if h only ‘shares’, or ‘identifies’, vertices when they have label f. If h is such a homomorphism,
we also write G1→f

h G2 or G2←f
h G1.

A bisimulation between G1 and G2 is a term graph G = ⟨R, lab,args,r⟩ over Σ with R ⊆V1 ×V2 and
r = ⟨r1, r2⟩ such that G1 ←π1 G→π2 G2 where π1 and π2 are projection functions, defined, for i ∈ {1,2},
by πi ∶V1 ×V2 →Vi, ⟨v1, v2⟩↦ vi. In this case we write G1 ↔R G2. And we write G1 ↔ G2 if there is a
bisimulation between G1 and G2.

C. Grabmayer & J. Rochel 59

Alternatively, bisimulations for term graphs can be defined directly as relations on the vertex sets,
obtaining the same notion of bisimilarity. In this formulation, a bisimulation between G1 and G2 is a
relation R ⊆V1×V2 such that the following conditions hold, for all ⟨v, v′⟩ ∈ R:

⟨r1, r2⟩ ∈ R (roots)
lab1(v) = lab2(v′) (labels)

⟨args1(v),args2(v′)⟩ ∈ R∗ (arguments)
where R∗ ∶={⟨v1⋯vk, v′1⋯v′k⟩ ∣ v1, . . . ,vk ∈V1, v′1, . . . ,v′k ∈V2 for k ∈N such that⟨vi, v′i⟩ ∈ R for all 1 ≤ i ≤ k} .

Bisimulation is an equivalence relation on the class TG(Σ) of term graphs over a signature Σ. The
homomorphism (functional bisimulation) relation→ is a pre-order on term graphs over a given signature
Σ, and it induces a partial order on isomorphism equivalence classes of term graphs over Σ. We will refer
to→ as the sharing pre-order, and will speak of it as sharing order, dropping the ‘pre’. The bisimulation
equivalence class [[G]∼]↔ ∶= {[G′]∼ ∣ G′↔G} of the isomorphism equivalence class [G]∼ of a term
graph G is ordered by homomorphism → such that ⟨[[G]∼]↔,→⟩ is a complete lattice [3, 10].Note that,
different from e.g. [10], we use the order relation → in the same direction as ≤ : if G1 →G2, then G2 is
greater or equal to G1 in the ordering→ (indicating that sharing is typically increased from G1 to G2).

Let K ⊆ TG(Σ) be a subclass of the term graphs over Σ, for a signature Σ. We say that K is closed
under homorphism (closed under bisimulation) if G→G′ (resp. G↔G′) for G,G′ ∈ TG(Σ) with G ∈K
implies G′ ∈K. Note these concepts are invariant under considering other signatures Σ′ withK ⊆TG(Σ′).

3 λ -higher-order-Term-Graphs

By Σλ we designate the signature {@,λ} with ar(@) = 2, and ar(λ) = 1. By Σλ
i , for i ∈ {0,1}, we denote

the extension Σλ ∪{0} of Σλ where ar(0) = i. The classes of term graphs over Σλ
0 and Σλ

1 are denoted byT0 and T1, respectively.
Let G = ⟨V, lab,args,r⟩ be a term graph over a signature extending Σλ or Σλ

i , for i ∈ {0,1}. By V(λ)
we designate the set of abstraction vertices of G, that is, the subset of V consisting of all vertices with
label λ ; more formally, V(λ) ∶= {v ∈V ∣ lab(v) = λ}. Analogously, the sets V(@) and V(0) of application
vertices and variable vertices of G are defined as the sets consisting of all vertices in V with label @ or
label 0, respectively. Whether the variable vertices have an outgoing edge depends on the value of i. The
intention is to consider two variants of term graphs, one with and one without variable back-links to their
corresponding abstraction.

A ‘λ -higher-order-term-graph’ consists of a Σλ
i -term-graph together with a scope function that maps

abstraction vertices to their scopes (‘extended scopes’ in [6]), which are subsets of the set of vertices.

Definition 1 (λ -ho-term-graph) Let i ∈ {0,1}. A λ -ho-term-graph (short for λ -higher-order-term-
graph) over Σλ

i , is a five-tuple G = ⟨V, lab,args,r,Sc⟩ where GG = ⟨V, lab,args,r⟩ is a Σλ
i -term-graph,

called the term graph underlying G, and Sc ∶V(λ)→ ℘(V) is the scope function of G (which maps an
abstraction vertex v to a set of vertices called its scope) that together with GG fulfills the following con-
ditions: For all k ∈ {0,1}, all vertices w,w0,w1 ∈V , and all abstraction vertices v,v0,v1 ∈V(λ) it holds:

⇒ r ∉ Sc−(v) (root)⇒ v ∈ Sc(v) (self)

v1 ∈ Sc−(v0) ⇒ Sc(v1) ⊆ Sc−(v0) (nest)

w↣k wk ∧ wk ∈ Sc−(v) ⇒ w ∈ Sc(v) (closed)

60 Term Graph Representations for Cyclic Lambda-Terms

G0:

λ

@

λ

@

0 @

0 λ

0

λ

@ G1:

λ

@

λ

@

0 @

0 λ

0

λ

@

Figure 1: G0 and G1 are λ -ho-term-graphs in Hλ
i whereby the dotted back-link edges are present for

i = 1, but absent for i = 0. The underlying term graphs of G0 and G1 are identical but their scope functions
(signified by the shaded areas) differ. While in G0 scopes are chosen as small as possible, which we refer
to as ‘eager scope closure’, in G1 some scopes are closed only later in the graph.

w ∈V(0) ⇒ ∃v0 ∈V(λ). w ∈ Sc−(v0) (scope)0

w ∈V(0) ∧ w↣0 w0 ⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩

w0 ∈V(λ) ∧∧ ∀v ∈V(λ).(w ∈ Sc(v)⇔w0 ∈ Sc(v)) (scope)1

where Sc−(v) ∶= Sc(v)∖{v}. Note that if i = 0, then (scope)1 is trivially true and hence superfluous, and
if i = 1, then (scope)0 is redundant, because it follows from (scope)1 in this case. For w ∈V and v ∈V(λ)
we say that v is a binder for w if w ∈ Sc(v), and we designate by bds(w) the set of binders of w.

The classes of λ -ho-term-graphs over Σλ
0 and Σλ

1 will be denoted byHλ
0 andHλ

1 .

See Fig. 1 for two different λ -ho-term-graphs over Σλ
i both of which represent the same term in the

λ -calculus with letrec, namely letrec f = λx.(λy.y (x g)) (λ z.g f), g = λu.u in f .
The following lemma states some basic properties of the scope function in λ -ho-term-graphs. Most

importantly, scopes in λ -ho-term-graphs are properly nested, in analogy with scopes in finite λ -terms.

Lemma 2 Let i ∈ {0,1}, and let G = ⟨V, lab,args,r,Sc⟩ be a λ -ho-term-graph over Σλ
i . Then the following

statements hold for all w ∈V and v,v1,v2 ∈V(λ):

(i) If w ∈ Sc(v), then v is visited on every access path of w, and all vertices on access paths of w after v
are in Sc−(v). Hence (since GG is a term graph, every vertex has an access path) bds(w) is finite.

(ii) If Sc(v1)∩Sc(v2) ≠ ∅ for v1 ≠ v2 , then Sc(v1) ⊆ Sc−(v2) or Sc(v2) ⊆ Sc−(v1). As a consequence,
if Sc(v1)∩Sc(v2) ≠∅, then Sc(v1) ⫋ Sc(v2) or Sc(v1) = Sc(v2) or Sc(v2) ⫋ Sc(v1).

(iii) If bds(w) ≠∅, then bds(w) = {v0, . . . ,vn} for v0, . . . ,vn ∈V(λ) and Sc(vn) ⫋ Sc(vn−1) . . . ⫋ Sc(v0).

Proof. Let i ∈ {0,1}, and let G = ⟨V, lab,args,r,Sc⟩ be a λ -ho-term-graph over Σλ
i .

For showing (i), let w ∈V and v ∈V(λ) be such that w ∈ Sc(v). Suppose that π ∶ r = w0 ↣k0 w1 ↣k1

w2⋯↣kn−1 wn = w is an access path of w. If w = v, then nothing remains to be shown. Otherwise wn =
w ∈ Sc−(v), and, if n > 0, then by (closed) it follows that wn−1 ∈ Sc(v). This argument can be repeated
to find subsequently smaller i with wi ∈ Sc(v) and wi+1, . . . ,wn ∈ Sc−(v). We can proceed as long as

C. Grabmayer & J. Rochel 61

wi ∈ Sc−(v). But since, due to (root), w0 = r ∉ Sc−(v), eventually we must encounter an i0 such that such
that wi0+1, . . . ,wn ∈ Sc−(v) and wi0 ∈ Sc(v)∖Sc−(v). This implies wi0 = v, showing that v is visited on π .

For showing (ii), let w ∈V and v1,v2 ∈V(λ), v1 ≠ v2 be such that w ∈ Sc(v1)∩Sc(v2). Let π be an
access path of w. Then it follows by (i) that both v1 and v2 are visited on π , and that, depending on
whether v1 or v2 is visited first on π , either v2 ∈ Sc−(v1) or v1 ∈ Sc−(v2). Then due to (nest) it follows that
either Sc(v2) ⊆ Sc−(v1) holds or Sc(v1) ⊆ Sc−(v2).

Finally, statement (iii) is an easy consequence of statement (ii). ◻
Remark 3 The notion of λ -ho-term-graph is an adaptation of the notion of ‘higher-order term graph’
by Blom [4, Def. 3.2.2] for the purpose of representing finite or infinite λ -terms or cyclic λ -terms, that
is, terms in the λ -calculus with letrec. In particular, λ -ho-term-graphs over Σλ

1 correspond closely to
higher-order term graphs over signature Σλ . But they differ in the following respects:
Abstractions: Higher-order term graphs in [4] are graph representations of finite or infinite terms in Combinatory

Reduction Systems (CRSs). They typically contain abstraction vertices with label ◻ that represent CRS-ab-
stractions. In contrast, λ -ho-term-graphs have abstraction vertices with label λ that denote λ -abstractions.

Signature: Whereas higher-order term graphs in [4] are based on an arbitrary CRS-signature, λ -ho-term-graphs
over Σλ

1 only contain the application symbol @ and the variable-occurrence symbol 0 in addition to the
abstraction symbol λ .

Variable back-links and variable occurrence vertices: In the formalization of higher-order term graphs in [4] there
are no explicit vertices that represent variable occurrences. Instead, variable occurrences are represented by
back-link edges to abstraction vertices. Actually, in the formalization chosen in [4, Def. 3.2.1], a back-link
edge does not directly target the abstraction vertex v it refers to, but ends at a special variant vertex v̄ of v.
(Every such variant abstraction vertex v̄ could be looked upon as a variable vertex that is shared by all edges
that represent occurrences of the variable bound by the abstraction vertex v.)
In λ -ho-term-graphs over Σλ

1 a variable occurrence is represented by a variable-occurrence vertex that as
outgoing edge has a back-link to the abstraction vertex that binds the occurrence.

conditions on the scope function: While the conditions (root), (self), (nest), and (closed) on the scope function in
higher-order term graphs in [4, Def. 3.2.2] correspond directly to the respective conditions in Def. 1, the
difference between the condition (scope) there and (scope)1 in Def. 1 reflects the difference described in the
previous item.

free variables: Whereas the higher-order term graphs in [4] cater for the presence of free variables, free variables
have been excluded from the basic format of λ -ho-term-graphs.

Definition 4 (homomorphism, bisimulation) Let i ∈ {0,1}. Let G1 and G2 be λ -ho-term-graphs over
Σλ

i with Gk = ⟨Vk, labk,argsk,rk,Sck⟩ for k ∈ {1,2}.
A homomorphism, also called a functional bisimulation, from G1 to G2 is a morphism from the struc-

ture ⟨V1, lab1,args1,r1,Sc1⟩ to the structure ⟨V2, lab2,args2,r2,Sc2⟩, that is, a function h ∶V1 →V2 such
that, for all v ∈V1 the conditions (labels), (arguments), and (roots) in in (1) are satisfied, and additionally,
for all v ∈V1(λ):

¯̄h(Sc1(v)) = Sc2(h(v)) (scope functions) (2)

where ¯̄h is the homomorphic extension of h to sets over V1, that is, to the function h̄ ∶ ℘(V1)→ ℘(V2),
A↦ {h(a) ∣ a ∈ A}. If there exists a homomorphism (a functional bisimulation) h from G1 to G2, then we
write G1→h G2 or G2←h G1, or, dropping h as subscript, G1→ G2 or G2← G1.

A bisimulation between G1 and G2 is a term graph G = ⟨R, lab,args,r,Sc⟩ over Σ with R ⊆V1×V2 and
r = ⟨r1, r2⟩ such that G1←π1 G→π2 G2 where π1 and π2 are projection functions, defined, for i ∈ {1,2}, by
πi ∶V1×V2→Vi, ⟨v1, v2⟩↦ vi. If there exists a bisimulation R between G1 and G2, then we write G1↔R G2,
or just G1↔ G2.

62 Term Graph Representations for Cyclic Lambda-Terms

G′0:

λ
()
v0

@
(v0)

λ
(v0)
v1

@
(v0v1)

0
(v0v1) @

(v0)

0
(v0) λ

()
v2

0
(v2)

@
()

λ

λ
()
v3 G′1:

@
(v0v1)

λ
(v0)
v3

@
(v0)

λ
()
v0

@
(v0)

λ
(v0)
v1

@
(v0v1)

0
(v0v1)

0
(v0) λ

()
v2

0
(v2)

λ

Figure 2: The λ -ap-ho-term-graphs corresponding to the λ -ho-term-graphs in Fig 1. The subscripts of
abstraction vertices indicate their names. The super-scripts of vertices indicate their abstraction-prefixes.
A precise formulation of this correspondence is given in Example 11.

4 Abstraction-prefix based λ -h.o.-term-graphs

By an ‘abstraction-prefix based λ -higher-order-term-graph’ we will mean a term-graph over Σλ
i for

i ∈ {0,1} that is endowed with a correct abstraction prefix function that maps abstraction vertices v to
words of vertices that represent the sequence of abstractions that have v in their scope. The conceptual
difference between the abstraction-prefix function and the scope function is that the former makes the
most essential scoping information locally available. It explicitly states all ‘extended scopes’ (induced
by the transitive closure of the in-scope relation, see [6]) in which a node resides in the order of their
nesting. This approach leads to simpler correctness conditions.

Definition 5 (correct abstraction-prefix function for Σλ
i -term-graphs) Let G = ⟨V, lab,args,r⟩ be, for

an i ∈ {0,1}, a Σλ
i -term-graph.

A function P ∶V →V∗ from vertices of G to words of vertices is called an abstraction-prefix function
for G. Such a function is called correct if for all w,w0,w1 ∈V and k ∈ {0,1}:

⇒ P(r) = ε (root)
w ∈V(λ) ∧ w↣0 w0 ⇒ P(w0) ≤ P(w)w (λ)
w ∈V(@) ∧ w↣k wk ⇒ P(wk) ≤ P(w) (@)

w ∈V(0) ⇒ P(w) ≠ ε (0)0

w ∈V(0) ∧ w↣0 w0 ⇒ w0 ∈V(λ) ∧ P(w0)w0 = P(w) (0)1

Note that analogously as in Def. 1, if i = 0, then (0)1 is trivially true and hence superfluous, and if i = 1,
then (0)0 is redundant, because it follows from (0)1 in this case.

We say that G admits a correct abstraction-prefix function if such a function exists for G.

Definition 6 (λ -ap-ho-term-graph) Let i ∈ {0,1}. A λ -ap-ho-term-graph (short for abstraction-prefix
based λ -higher-order-term-graph) over signature Σλ

i is a five-tuple G = ⟨V, lab,args,r,P⟩ where GG =⟨V, lab,args,r⟩ is a Σλ
i -term-graph, called the term graph underlying G, and P is a correct abstraction-

prefix function for GG . The classes of λ -ap-ho-term-graphs over Σλ
i will be denoted byHi

(λ).
See Fig. 2 for two examples, which correspond, as we will see, to the λ -ho-term-graphs in Fig. 1.
The following lemma states some basic properties of the scope function in λ -ap-ho-term-graphs.

C. Grabmayer & J. Rochel 63

Lemma 7 Let i ∈ {0,1} and let G = ⟨V, lab,args,r,P⟩ be a λ -ap-ho-term-graph over Σλ
i . Then the fol-

lowing statements hold:

(i) Suppose that, for some v,w ∈V , v occurs in P(w). Then v ∈V(λ), occurs in P(w) only once, and
every access path of w passes through v, but does not end there, and thus w ≠ v. Furthermore it
holds: P(v)v ≤ P(w). In particular, if P(w) = pv, then P(v) = p.

(ii) Vertices in abstraction prefixes are abstraction vertices, and hence P is of the form P ∶V → (V(λ))∗.
(iii) For all v ∈V(λ) it holds: v ∉ P(v).
(iv) While access paths might end in vertices in V(0), they only pass through vertices in V(λ)∪V(@).

Proof. Let i ∈ {0,1} and let G = ⟨V, lab,args,r,P⟩ be a λ -ap-ho-term-graph over Σλ
i .

For showing (i), let v,w ∈V be such that v occurs in P(w). Suppose further that π is an access path
of w. Note that when walking through π the abstraction prefix starts out empty (due to (root)), and is
expanded only in steps from vertices v′ ∈V(λ) (due to (λ), (@), and (0)1) in which just v′ is added to the
prefix on the right (due to (λ)). Since v occurs in P(w), it follows that v ∈V(λ), that v must be visited on
π , and that π continues after the visit to v. That π is an access path also entails that v is not visited again
on π , hence that w ≠ v and that v occurs only once in P(w), and that P(v)v, the abstraction prefix of the
successor vertex of v on π , is a prefix of the abstraction prefix of every vertex that is visited on π after v.

Statements (ii) and (iii) follow directly from statement (i).
For showing (iv), consider an access path π ∶ r = w0 ↣⋯↣ wn that leads to a vertex wn ∈V(0). If

i = 0, then there is no path that extends π properly beyond wn. So suppose i = 1, and let wn+1 ∈V be such
that wn↣0 wn+1. Then (0)1 implies that P(wn) = P(wn+1)wn+1, from which it follows by (i) that wn+1 is
visited already on π . Hence π does not extend to a longer path that is again an access path. ◻
Definition 8 (homomorphism, bisimulation) Let i ∈ {0,1}. Let G1 and G2 be λ -ap-ho-term-graphs over
Σλ

i with Gk = ⟨Vk, labk,argsk,rk,Pk⟩ for k ∈ {1,2}.
A homomorphism, also called a functional bisimulation, from G1 to G2 is a morphism from the

structure ⟨V1, lab1,args1,r1,P1⟩ to the structure ⟨V2, lab2,args2,r2,P2⟩, that is, a function h ∶V1→V2 such
that, for all v ∈V1 the conditions (labels), (arguments), and (roots) in in (1) are satisfied, and additionally,
for all v ∈V1:

h̄(P1(v)) = P2(h(v)) (abstraction-prefix functions) (3)

where h̄ is the homomorphic extension of h to words over V1. In this case we write G1→h G2, or G2←h G1.
And we write G1→G2, or for that matter G2←G1, if there is a homomorphism (a functional bisimulation)
from G1 to G2.

A bisimulation between G1 and G2 is a term graph G = ⟨R, lab,args,r,Sc⟩ over Σ with R ⊆V1×V2 and
r = ⟨r1, r2⟩ such that G1←π1 G→π2 G2 where π1 and π2 are projection functions, defined, for i ∈ {1,2}, by
πi ∶V1 ×V2 →Vi, ⟨v1, v2⟩↦ vi. If there exists a homomorphism (a functional bisimulation) h from G1 toG2, then we write G1→h G2 or G2←h G1, or, dropping h as subscript, G1→ G2 or G2← G1.

The following proposition defines mappings between λ -ho-term-graphs and λ -ap-ho-term-graphs
by which we establish a bijective correspondence between the two classes. For both directions the
underlying λ -term-graph remains unchanged. Ai derives an abstraction-prefix function P from a scope
function by assigning to each vertex a word of its binders in the correct nesting order. Bi defines its scope
function Sc by assigning to each λ -vertex v the set of vertices that have v in their prefix (along with v
since a vertex never has itself in its abstraction prefix).

64 Term Graph Representations for Cyclic Lambda-Terms

Proposition 9 For each i ∈ {0,1}, the mappings Ai and Bi are well-defined between the class of λ -ho-
term-graphs over Σλ

i and the class of λ -ap-ho-term-graphs over Σλ
i :

Ai ∶Hλ
i →Hi

(λ), G = ⟨V, lab,args,r,Sc⟩↦ Ai(G) ∶= ⟨V, lab,args,r,P⟩
where P ∶V →V∗, w↦ v0 ⋯ vn if bds(w)∖{w} = {v0, . . . ,vn} and

Sc(vn) ⫋ Sc(vn−1) . . . ⫋ Sc(v0)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(4)

Bi ∶Hi
(λ)→Hλ

i , G = ⟨V, lab,args,r,P⟩↦ Ai(G) ∶= ⟨V, lab,args,r,Sc⟩
where Sc ∶V(λ)→ ℘(V), v↦ {w ∈V ∣ v occurs in P(w)}∪{v}

⎫⎪⎪⎬⎪⎪⎭ (5)

Theorem 10 (correspondence of λ -ho-term-graphs with λ -ap-ho-term-graphs) For each i ∈ {0,1}
it holds that the mappings Ai in (4) and Bi in (5) are each other’s inverse; thus they define a bijective
correspondence between the class of λ -ho-term-graphs over Σλ

i and the class of λ -ap-ho-term-graphs
over Σλ

i . Furthermore, they preserve and reflect the sharing orders onHλ
i and onHi

(λ):
(∀G1,G2 ∈Hλ

i) G1→ G2 ⇐⇒ Ai(G1)→ Ai(G1)
(∀G1,G2 ∈Hi

(λ)) Bi(G1)→ Bi(G1) ⇐⇒ G1→ G2

Example 11 The λ -ho-term-graphs in Fig. 1 correspond to the λ -ap-ho-term-graphs in Fig. 2 via the
mappings Ai and Bi as follows: Ai(G0) = G′0 , Ai(G1) = G′1 , Bi(G0) = G′0 , Ai(G1) = G′1 .

For λ -ho-term-graphs over the signature Σλ
0 (that is, without variable back-links) essential binding

information is lost when looking only at the underlying term graph, to the extent that λ -terms cannot
be unambiguously represented anymore. For instance the λ -ho-term-graphs that represent the λ -terms
λxy.x y and λxy.x x have the same underlying term graph. The same holds for λ -ap-ho-term-graphs.

This is not the case for λ -ho-term-graphs (λ -ap-ho-term-graphs) over Σλ
1 , because the abstraction

vertex to which a variable-occurrence vertex belongs is uniquely identified by the back-link. This is the
reason why the following notion is only defined for the signature Σλ

1 .

Definition 12 (λ -term-graph over Σλ
1) A term graph G over Σλ

1 is called a λ -term-graph over Σλ
1 if G

admits a correct abstraction-prefix function. By T1
(λ) we denote the class of λ -term-graphs over Σλ

1 .

In the rest of this section we examine, and then dismiss, a naive approach to implementing functional
bisimulation on λ -ho-term-graphs or λ -ap-ho-term-graphs, which is to apply the homomorphism on the
underlying term graph, hoping that this application would simply extend to the λ -ho-term-graph (λ -ap-
ho-term-graph) without further ado. We demonstrate that this approach fails, concluding that a faithful
first-order implementation of functional bisimulation must not be negligent of the scoping information.

Definition 13 (scope- and abstraction-prefix-forgetful mappings) Let i ∈ {0,1}. The scope-forgetful
mapping ScFλ

i and the abstraction-prefix-forgetful mapping PF1
(λ) map λ -ho-term-graphs in Ti

(λ), and
respectively, λ -ho-term-graphs in Ti

(λ) to their underlying term graphs:

ScFλ
i ∶Hλ

i → Ti , ⟨V, lab,args,r,Sc⟩↦ ⟨V, lab,args,r⟩
PFi
(λ) ∶Hi

(λ)→ Ti , ⟨V, lab,args,r,P⟩↦ ⟨V, lab,args,r⟩
Definition 14 Let G be a λ -ho-term-graph over Σλ

i for i ∈ {0,1} with underlying term graph ScFλ
i (G).

And suppose that ScFλ
i (G)→h G′ holds for a term graph G′ over Σλ

i and a functional bisimulation h. We
say that h extends to a functional bisimulation on G if G′ can be endowed with a scope function to obtain
a λ -ho-term-graph G′ with ScFλ

i (G′) =G′ and such that it holds G →h G′.

C. Grabmayer & J. Rochel 65

We say that a classK of λ -ho-term-graphs is closed under functional bisimulations on the underlying
term graphs if for every G ∈ K and for every homomorphism h on the term graph underlying G that
witnesses ScFλ

i (G)→h G′ for a term graph G′ there exists G′ ∈K with ScFλ
i (G′) = G′ such that G →h G′

holds, that is, h is also a homorphism between G and G′.
These notions are also extended, by analogous stipulations, to λ -ap-ho-term-graphs over Σλ

i for
i ∈ {0,1} and their underlying term graphs.
Proposition 15 Neither the class Hλ

1 of λ -ho-term-graphs nor the class H1
(λ) of λ -ap-ho-term-graphs

is closed under functional bisimulations on the underlying term graphs.

Proof. In view of Thm. 10 it suffices to show the statement for Hλ
1 . We show that not every functional

bisimulation on the term graph underlying a λ -ho-term-graph over Σλ
1 extends to a functional bisimula-

tion on the higher-order term graphs. Consider the following term graphs G0 and G1 over Σλ
1 (at first,

please ignore the scope shading):

G1:

λ

@

λ

@

@

0 0

@

0 0

G0:

λ

@

@

0 0

There is an obvious homomorphism h that witnesses G1→h G0. Both of these term graphs extend to
λ -ho-term-graphs by suitable scope functions (one possibility per term graph is indicated by the scope
shadings above; G1 actually admits two possibilities). However, h does not extend to any of the λ -ho-
term-graphs G1 and G0 that extend G1 and G0, respectively. ◻

The next proposition is merely a reformulation of Prop. 15.
Proposition 16 The scope-forgetful mapping ScFλ

1 onHλ
1 and the abstraction-prefix-forgetful mapping

PF1
(λ) onH1

(λ) preserve, but do not reflect, the sharing orders on these classes. In particular:

(∀G1,G2 ∈H1
(λ)) G1→ G2 Ô⇒ PF1

(λ)(G1)→ PF1
(λ)(G2)(∃G1,G2 ∈H1

(λ)) G1 /→ G2 ∧ PF1
(λ)(G1)→ PF1

(λ)(G2)
As a consequence of this proposition it is not possible to faithfully implement functional bisimulation

on λ -ho-term-graphs and λ -ap-ho-term-graphs by only considering the underlying term graphs, and in
doing so neglecting2 the scoping information from the scope function, or respectively, from the abstrac-
tion prefix function. In order to yet be able to implement functional bisimulation of λ -ho-term-graphs
and λ -ap-ho-term-graphs in a first-order setting, in the next section we introduce a class of first-order
term graphs that accounts for scoping by means of scope delimiter vertices.

5 λ -Term-Graphs with Scope Delimiters

For all i ∈ {0,1} and j ∈ {1,2} we define the extensions Σλ
i, j ∶= Σλ ∪ {0,S} of the signature Σλ where

ar(0) = i and ar(S) = j , and we denote the class of term graphs over signature Σλ
i, j by Ti, j.

2 In the case of Σλ
1 implicit information about possible scopes is being kept, due to the presence of back-links from variable

occurrence vertices to abstraction vertices. But this is not enough for reflecting the sharing order under the forgetful mappings.

66 Term Graph Representations for Cyclic Lambda-Terms

Let G be a term graph with vertex set V over a signature extending Σλ
i, j for i ∈ {0,1} and j ∈ {1,2}.

We denote by V(S) the subset of V consisting of all vertices with label S, which are called the delimiter
vertices of G. Delimiter vertices signify the end of an ‘extended scope’ [6]. They are analogous to
occurrences of function symbols S in representations of λ -terms in a nameless de-Bruijn index [5] form
in which Dedekind numerals based on 0 and the successor function symbol S are used (this form is due
to Hendriks and van Oostrom, see also [9], and is related to their end-of-scope symbol λ[7]).

Analogously as for the classesHλ
i andHi

(λ), the index i will determine whether in correctly formed
λ -term-graphs (defined below) variable vertices have back-links to the corresponding abstraction. Here
additionally scope-delimiter vertices have such back-links (if j = 2) or not (if j = 1).

Definition 17 (correct abstraction-prefix function for Σλ
i, j-term-graphs) Let G = ⟨V, lab,args,r⟩ be a

Σλ
i, j-term-graph for an i ∈ {0,1} and an j ∈ {1,2}.

A function P ∶V →V∗ from vertices of G to words of vertices is called an abstraction-prefix function
for G. Such a function is called correct if for all w,w0,w1 ∈V and k ∈ {0,1} it holds:

⇒ P(r) = ε (root)
w ∈V(λ) ∧ w↣0 w0 ⇒ P(w0) = P(w)w (λ)
w ∈V(@) ∧ w↣k wk ⇒ P(wk) = P(w) (@)
w ∈V(0) ⇒ P(w) ≠ ε (0)0

w ∈V(0) ∧ w↣0 w0 ⇒ w0 ∈V(λ) ∧ P(w0)w0 = P(w) (0)1

w ∈V(S) ∧ w↣0 w0 ⇒ P(w0)v = P(w) for some v ∈V (S)1

w ∈V(S) ∧ w↣1 w1 ⇒ w1 ∈V(λ) ∧ P(w1)w1 = P(w) (S)2

Note that analogously as in Def. 1 and in Def. 6, if i = 0, then (0)1 is trivially true and hence superfluous,
and if i = 1, then (0)0 is redundant, because it follows from (0)1 in this case. Additionally, if j = 1, then(S)2 is trivially true and therefore superfluous.

Definition 18 (λ -term-graph over Σλ
i, j) Let i ∈ {0,1} and j ∈ {1,2}. A λ -term-graph (with scope-de-

limiters) over Σλ
i, j is a Σλ

i, j-term-graph that admits a correct abstraction-prefix function. The class of
λ -term-graphs over Σλ

i, j is denoted by Ti, j
(λ).

See Fig. 3 for examples, that, as we will see, correspond to the ho-term-graphs in Fig. 1 and in Fig. 2.

Lemma 19 Let i ∈ {0,1} and j ∈ {1,2}, and let G = ⟨V, lab,args,r⟩ be a λ -term-graph over Σλ
i, j. Then

the statements (i)–(iii) in Lemma 7 hold, and additionally:
(iv) Access paths may end in vertices in V(0), but only pass through vertices in V(λ)∪V(@)∪V(S),

and depart from vertices in V(S) only via indexed edges S↣0.
(v) There exists precisely one correct abstraction-prefix function on G.

Proof. That also here statements (i)–(iii) in Lemma 7 hold, and that statement (iv) holds, can be shown
analogously as in the proof of the respective items of Lemma 7. For (v) it suffices to observe that if P is
a correct abstraction-prefix function for G, then, for all w ∈V , the value P(w) of P at w can be computed
by choosing an arbitrary access path π from r to w and using the conditions (λ), (@), and (S)0 to
determine in a stepwise manner the values of P at the vertices that are visited on π . Hereby note that in
every transition along an edge on π the length of the abstraction prefix only changes by at most 1. ◻

Now we define a precise relationship between λ -term-graphs and λ -ap-ho-term-graphs via transla-
tion mappings between these classes:

C. Grabmayer & J. Rochel 67

G0:

λ

@

λ

@

0 S

@

0 S

λ

0

S

λ

S

@

G1:

λ

@

λ

@

0 @

S

0

S

S

λ

0

λ

S

@

S S

Figure 3: The λ -term-graphs corresponding to the λ -ap-ho-term-graphs from Fig 2 and the λ -ho-term-
graphs from Fig 1. A precise formulation of this correspondence is given in Example 23.

The mapping Gi, j (see Prop. 20) produces a λ -term-graph for any given λ -ap-ho-term-graph by adding
to the original set of vertices a number of delimiter vertices at the appropriate places. That is, at
every position where the abstraction prefix decreases by n elements, n S-vertices are inserted. In
the image, the original abstraction prefix is retained as part of the vertices. This can be considered
intermittent information used for the purpose of defining the edges of the image.

The mapping Gi, j (see Prop. 21) back to λ -ap-ho-term-graphs is simpler because it only has to erase the
S-vertices, and add the correct abstraction prefix that exists for the λ -term-graph to be translated.

Proposition 20 Let i ∈ {0,1} and j ∈ {1,2}. The mapping Gi, j defined below is well-defined between the
class of λ -term-graphs over Σλ

i, j and the class of λ -ap-ho-term-graphs over Σλ
i :

Gi, j ∶Hi
(λ)→ Ti, j

(λ), G = ⟨V, lab,args,r,P⟩↦Gi, j(G) ∶= ⟨V ′, lab′,args′,r′⟩
where:

V ′ ∶= {⟨w,P(w)⟩ ∣ w ∈V}∪{⟨w,k,w′, p⟩ ∣ w,w′ ∈V, w↣k w′, V(w) = λ ∧ P(w′) < p ≤ P(w)w∨ V(w) =@ ∧ P(w′) < p ≤ P(w)}
r′ ∶= ⟨r, ε⟩ lab′ ∶V ′→ Σλ

i, j , ⟨w,P(w)⟩↦ lab′(⟨w,P(w)⟩) ∶= lab(w)⟨w,k,w′, p⟩↦ lab′(w,k,w′, p) ∶= S
and args′ ∶V ′→ (V ′)∗ is defined such that for the induced indexed successor relation↣′(⋅) it holds:

w↣k wk ∧ #del(w, k) = 0 Ô⇒ ⟨w,P(w)⟩↣′
k ⟨wk,P(wk)⟩

w↣0 w0 ∧ #del(w,0) > 0 ∧ lab(w) = λ ∧ P(w) = P(w0)v pÔ⇒ ⟨w,P(w)⟩↣′
0 ⟨w,0,w0,P(w)w⟩ ∧ ⟨w,0,w0,P(w0)v⟩↣′

0 ⟨w0,P(w0)⟩
w↣k wk ∧ #del(w, k) > 0 ∧ lab(w) =@ ∧ P(w) = P(wk)v pÔ⇒ ⟨w,P(w)⟩↣′

k ⟨w,k,wk,P(w)⟩ ∧ ⟨w,k,wk,P(wk)v⟩↣′
0 ⟨wk,P(wk)⟩

w↣k wk ∧ #del(w, k) > 0 ∧ ⟨w,k,wk, pv⟩, ⟨w,k,wk, p⟩ ∈V ′ Ô⇒ ⟨w,k,wk, pv⟩↣′
0 ⟨w,k,wk, p⟩

w↣k wk ∧ #del(w, k) > 0 ∧ ⟨w,k,wk, pv⟩ ∈V ′ ∧ j = 2 Ô⇒ ⟨w,k,wk, pv⟩↣′
1 ⟨wk,P(wk)⟩

68 Term Graph Representations for Cyclic Lambda-Terms

for all w,w0,w1,v ∈V , k ∈ {0,1}, p ∈V∗, and where the function #del is defined as:

#del(w, k) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∣P(w)∣− ∣P(w′)∣ if w ∈V(@) ∧w↣k w′
∣P(w)∣+1− ∣P(w′)∣ if w ∈V(λ) ∧w↣k w′
0 otherwise

Proposition 21 Let i ∈ {0,1} and j ∈ {1,2}. The mapping Gi, j defined below is well-defined between the
class of λ -term-graphs over Σλ

i, j and the class of λ -ap-ho-term-graphs over Σλ
i :

Gi, j ∶ Ti, j
(λ)→Hi

(λ), G = ⟨V, lab,args,r⟩↦ Gi, j(G) ∶= ⟨V ′, lab′,args′,r′,P′⟩
where V ′ ∶=V(λ)∪V(@)∪V(0), lab′ ∶= lab∣V ′ , r′ ∶= r,

args′ ∶V ′→ (V ′)∗ so that for the induced indexed succ. relation↣′(⋅):
v0↣′

k v1 ∶⇔ v0↣k ⋅ (S↣0)∗ v1 (for all v0,v1 ∈V ′, k ∈ {0,1})
P′ ∶= P∣V ′ for the correct abstraction-prefix function P for G.

Theorem 22 (correspondence between λ -ap-ho-term-graphs with λ -term-graphs) Let i ∈{0,1} and
j ∈ {1,2}. The mappings Gi, j from Prop. 21 and Gi, j from Prop. 20 define a correspondence between the
classes of λ -term-graphs over Σλ

i, j and of λ -ap-ho-term-graphs over Σλ
i with the following properties:

(i) Gi, j ○Gi, j = idHi(λ) .
(ii) For all G ∈ Ti, j

(λ): (Gi, j ○ Gi, j)(G)→S G.
(iii) Gi, j and Gi, j preserve and reflect the sharing orders onHi

(λ) and on Ti, j
(λ):

(∀G1,G2 ∈Hi
(λ)) G1→ G2 ⇐⇒ Gi, j(G1)→Gi, j(G2)

(∀G1,G2 ∈ Ti, j
(λ)) Gi, j(G1)→ Gi, j(G2) ⇐⇒ G1→G2

Example 23 The λ -ap-ho-term-graphs in Fig. 2 correspond to the λ -ap-ho-term-graphs in Fig. 3 via the
mappings Gi, j and Gi, j as follows: Gi, j(G0)=G′

0 , Gi, j(G1)=G′
1 , Gi, j(G0)=G′0 , Gi, j(G1)=G′1 .

Remark 24 The correspondence in Theorem 22 is not a bijection since Gi, j is not injective. This can be
seen for the following graphs (here with i = 0 and j = 1) where we have G0,1(G) = G = G0,1(G′):

G:

λ

@

λ

S

0

λ
G:

λ
()
v1

@
(v1)

0
(v1)

λ
(v1)
v3

λ
(v
v

(v1)
v2

G′:

λ

@

λ

S

0

λ

S

0

Obviously λ -ap-ho-term-graphs are not capable of reproducing the different degrees of S-sharing.

6 Not closed under bisimulation and functional bisimulation

In this section we collect all negative results concerning closedness under bisimulation and functional
bisimulation for the classes of λ -term-graphs as introduced in the previous section.

C. Grabmayer & J. Rochel 69

Proposition 25 None of the classes T1
(λ) and Ti, j

(λ), for i ∈ {0,1} and j ∈ {1,2}, of λ -term-graphs are
closed under bisimulation.

This proposition is an immediate consequence of the next one, which can be viewed as a refinement,
because it formulates non-closedness of classes of λ -term-graphs under specializations of bisimulation,
namely for functional bisimulation (under which some classes are not closed), and for converse func-
tional bisimulation (under which none of the classes considered here is closed).

Proposition 26 The following statements hold:

(i) None of the classes T000, j
(λ) for j ∈ {1,2} of λ -term-graphs are closed under functional bisimulation→, or under converse functional bisimulation← .

(ii) None of the classes T111
(λ) and T111, j

(λ) for j ∈ {1,2} of λ -term-graphs are closed under converse
functional bisimulation.

(iii) The class T111,111
(λ) of λ -term-graphs is not closed under functional bisimulation.

(iv) The class T111,222
(λ) of λ -term-graphs is not closed under functional bisimulation.

Proof. For showing (i), let ∆ be one of the signatures Σλ
0, j. Consider the following term graphs over ∆:

G2:
@

λ

0

λ

0

G1:
@

λ λ

0

G0:
@

λ

0

Note that G2 represents the syntax tree of the nameless de-Bruijn-index notation (λ0) (λ0) for the
λ -term (λx.x) (λx.x). Then it holds: G2 → G1 → G0. But while G2 and G0 admit correct abstraction-
prefix functions over ∆ (nestedness of the implicitly defined scopes, here shaded), and consequently are
λ -term-graphs over ∆, this is not the case for G1 (overlapping scopes). Hence the class of λ -term-graphs
over ∆ is closed neither under functional bisimulation nor under converse functional bisimulation.

For showing (ii), let ∆ be one of the signatures Σλ
1 and Σλ

1, j. Consider the term graphs over ∆:

G′
1:

@

λ

0

λ
G′

0:
@

λ

0

Then it holds: G′
1 → G′

0. But while G′
0 admits a correct abstraction-prefix function, and therefore is

a λ -term-graph, over ∆, this is not the case for G′
1 (due to overlapping scopes). Hence the class of

λ -term-graphs over ∆ is not closed under converse functional bisimulation.
For showing (iii), consider the following term graphs over Σλ

1,1:

G′′
1 :

λ

@

λ

S

0

λ

S

0

G′′
0 :

λ

@

λ λ

S

0

70 Term Graph Representations for Cyclic Lambda-Terms

Then it holds that G′′
1 →G′′

0 . However, while G′′
1 admits a correct abstraction-prefix function, and hence

is a λ -term-graph over Σλ
1,1, this is not the case for G′′

0 (due to overlapping scopes). Therefore the class
of λ -term-graphs over Σλ

1,1 is not closed under functional bisimulation.
For showing (iv), consider the following term graphs over Σλ

1,2:

G′′′
1 :

@

λ

λ

0

λ

0

0

λ

@
G′′′

0 :

@

λ

λ

0

0

λ

@

Then it holds that G′′′
1 → G′′′

0 . However, while G′′′
1 admits a correct abstraction-prefix function, and

hence is a λ -term-graph over Σλ
1,2, this is not the case for G′′′

0 (overlapping scopes). Therefore the class
of λ -term-graphs over Σλ

1,2 is not closed under functional bisimulation. The scopes defined implicitly by
these graphs are larger than necessary: they do not exhibit ‘eager scope closure’, see Section 7. ◻

As an easy consequence of Prop. 25, and of Prop. 26, (i) and (ii), together with the examples used in
the proof, we obtain the following two propositions.

Proposition 27 Let i ∈ {0,1}. None of the classes Hλ
i of λ -ho-term-graphs, or Hi

(λ) of λ -ap-ho-term-
graphs are closed under bisimulations on the underlying term graphs.

Proposition 28 The following statements hold:

(i) Neither the class Hλ
0 nor the class H0

(λ) is closed under functional bisimulations, or under con-
verse functional bisimulations, on the underlying term graphs.

(ii) Neither the class Hλ
1 of λ -ho-term-graphs nor the class H1

(λ) of λ -ap-ho-term-graphs is closed
under converse functional bisimulations on underlying term graphs.

Note that Prop. 28, (i) is a strengthening of the statement of Prop. 15 earlier.

7 Closed under functional bisimulation

The negative results gathered in the last section might seem to show our enterprise in a quite poor state:
For the classes of λ -term-graphs we introduced, Prop. 26 only leaves open the possibility that the classT1
(λ) is closed under functional bisimulation. Actually, T1

(λ) is closed (we do not prove this here), but
that does not help us any further, because the correspondences in Thm. 22 do not apply to this class,
and worse still, Prop. 16 rules out simple correspondences for T1

(λ). So in this case we are left without
the satisfying correspondences to λ -ho-term-graphs and λ -ap-ho-term-graphs that yet exist for the other
classes of λ -term-graphs, but which in their turn are not closed under functional bisimulation.

But in this section we establish that the class T1,2
(λ) is very useful after all: its restriction to term

graphs with eager application of scope closure is in fact closed under functional bisimulation.
The reason for the non-closedness of T1,2

(λ) under functional bisimulation consists in the fact that
λ -term-graphs over Σλ

1,2 do not necessarily exhibit ‘eager scope closure’: for example in the term graph
G′′′

1 from the proof of Prop. 26, (iv), the scopes of the two topmost abstractions are not closed on the
paths to variable occurrences belonging to the bottommost abstractions. For the following variation G̃1

C. Grabmayer & J. Rochel 71

of G1 with eager scope closure the problem disappears:

G̃1:

@

λ

0

S0

λ

@

λ

S

λ

0

G̃0:

@

λ

0

S0

λ

@

λ

S

Its bisimulation collapse G̃0 has again a correct abstraction-prefix function and hence is a λ -term-graph.

Definition 29 (eager-scope, and fully back-linked, λ -term-graphs) Let G= ⟨V, lab,args,r⟩ be a λ -term-
graph over Σλ

1, j for j ∈ {1,2} with abstraction-prefix function P ∶ V → V∗. We call G an eager-scope
λ -term-graph (over Σλ

1, j) if it holds:

∀w,v ∈V . ∀p ∈V∗. P(w) = pv ⇒ ∃n ∈N∃w1, . . . ,wn−1 ∈V .

w↣w1↣ . . .↣wn−1↣0 v∧ wn−1 ∈V(0) ∧ ∀1 ≤ i ≤ n−1. P(w) ≤ P(wi) ,
that is, if for every vertex w in G with a non-empty abstraction-prefix P(w) that ends with v there exists
a path from w to v in G via vertices with abstraction-prefixes that extend P(w) and finally a variable-
occurrence vertex before reaching v. By eagTi, j

(λ)we denote the subclass of Ti, j
(λ) consisting of all eager-

scope-λ -term-graphs. And we say that G is fully back-linked if it holds:

∀w,v ∈V1. ∀p ∈V∗
1 . P(w) = pv ⇒ w↣∗ v , (6)

that is, if for all vertices w of G1, the last vertex v in the abstraction-prefix of w is reachable from v. Note
that eager-scope implies fully back-linkedness for λ -term-graphs.

Lemma 30 Let G be a fully back-linked λ -term-graph in T1,2
(λ) with vertex set V , and let P be its ab-

straction-prefix function. Let G′ be a term graph over Σλ
1,2 (thus in T1,2) such that G→h G′. Then it holds:

∀v1,v2 ∈V . h(v1) = h(v2) ⇒ h̄(P(v1)) = h̄(P(v2)) (7)

where h̄ is the homomorphic extension of h to words over V .

Proof (Idea). Let G1, G2 be as assumed in the lemma, and let h be a homomorphism that witnesses
G1 →h G2. We will use the following distance parameter for vertices of G1: Let, for all w ∈V1, dλ ,P(w)
be either 0 if P(w) is empty, or otherwise the minimum length of a path in G1 from w to the last vertex
in the abstraction-prefix P(w). Thus due to (6), dλ ,P(w) ∈ N for all vertices w of G1. Now (7) can be
proved by induction on max{dλ ,P(v1),dλ ,P(v2)} with a subinduction on max{∣P(v1)∣ , ∣P(v2)∣}. ◻

This lemma is the crucial stepping stone for the proof of the following theorem.

Theorem 31 (preservation of λ -term-graphs over Σλ
1,2 under homomorphism) Let G and G′ be term

graphs over Σλ
1,2 such that G is a λ -term-graph in T1,2

(λ), and G→h G′ holds for a homomorphism h.
If G is fully back-linked, then also G′ is a λ -term-graph in T1,2

(λ), which is fully back-linked. If, in
addition, G is an eager-scope λ -term-graph, then so is G′.

72 Term Graph Representations for Cyclic Lambda-Terms

Corollary 32 The subclass eagT1,2
(λ) of the class T1,2 that consists of all eager-scope λ -term-graphs inT1,2

(λ) is closed under functional bisimulation.

Since the counterexample in the proof of Prop. 26, (iii) used eager-scope λ -term-graphs, it rules out
a statement analogous to Cor. 32 for the class T1,1

(λ). Such a statement for T0,1
(λ) and T0,2

(λ) is ruled out
similarly, with respect to an appropriate definition of ‘eager-scope’ for λ -term-graphs over Σλ

0,1 and Σλ
0,2.

Corollary 33 Let h be a functional bisimulation from an eager-scope λ -term-graph G over Σλ
1,2 to a term

graph G′ over Σλ
1,2 (h witnesses G→h G′). Then G′ is an eager-scope λ -term-graph as well, and h extends

to a functional bisimulation from G1,2(G) to G1,2(G′) (thus h also witnesses G1,2(G)→h G1,2(G′)).

8 Conclusion

We first defined higher-order term graph representations for cyclic λ -terms:
• λ -ho-term-graphs inHλ

i , an adaptation of Blom’s ‘higher-order term graphs’ [4], which possess a
scope function that maps every abstraction vertex v to the set of vertices that are in the scope of v.

• λ -ap-ho-term-graphs in Hi
(λ), which instead of a scope function carry an abstraction-prefix func-

tion that assigns to every vertex w information about the scoping structure relevant for w. Ab-
straction prefixes are closely related to the notion of ‘generated subterms’ for λ -terms [6]. The
correctness conditions here are simpler and more intuitive than for λ -ho-term-graphs.

These classes are defined for i ∈ {0,1}, according to whether variable occurrences have back-links to
abstractions (for i = 1) or not (for i = 0). Our main statements about these classes are:

• a bijective correspondence betweenHλ
i andHi

(λ) via mappings Ai and Bi that preserve and reflect
the sharing order (Thm. 10);

• the naive approach to implementing homomorphisms on theses classes (ignoring all scoping infor-
mation and using only the underlying first-order term graphs) fails (Prop. 16).

The latter was the motivation to consider first-order term graph implementations with scope delimiters:
• λ -term-graphs in Ti, j

(λ) (with i ∈ {0,1} and j = 2 or j = 1 for scope delimiter vertices with or without
back-links, respectively), which are first-order term graphs without a higher-order concept, but for
which correctness conditions are formulated via the existence of an abstraction-prefix function.

The most important results linking these classes with λ -ap-ho-term-graphs are:
• an ‘almost bijective’ correspondence between the classes Hi

(λ) and Ti, j
(λ) via mappings Gi, j andGi, j that preserve and reflect the sharing order (Thm. 22);

• the subclass eagT1,2
(λ)of eager-scope λ -term-graphs in T1,2

(λ) is closed under homomorphism (Cor. 32).
The correspondences together with the closedness result allow us to derive methods to handle homo-
morphisms between eager higher-order term graphs in Hλ

1 and H1
(λ) in a straightforward manner by

implementing them via homomorphisms between first-order term graphs in T1,2
(λ).

eagHλ
1

eagH1
(λ)

eagT1,2
(λ)

A1

G1,2 G1,2

B1

G0 G′0
G1 G′1
G G′

h

h

h′

A1

G1,2 G1,2

B1

For example, the property that a unique maximally shared form exists for λ -term-graphs in T1,2
(λ) (which

C. Grabmayer & J. Rochel 73

can be computed as the bisimulation collapse that is guaranteed to exist for first-order term graphs) can
now be transferred to eager-scope λ -ap-ho-term-graphs and λ -ho-term-graphs via the correspondence
mappings (see the diagram above). For this to hold it is crucial that eagT1,2

(λ) is closed under homomor-
phism, and that the correspondence mappings preserve and reflect the sharing order. The maximally
shared form maxeagHλ

1
(G) of an eager λ -ho-term-graph G can furthermore be computed as:

maxeagHλ
1
(G) = (B1 ○ G1,2 ○maxeagT1,2(λ) ○G1,2 ○ A1)(G).

where maxeagT1,2(λ) maps every λ -term-graph in T1,2
(λ) to its bisimulation collapse. For obtaining maxeagT1,2(λ)

fast algorithms for computing the bisimulation collapse of first-order term graphs can be utilized.
While we have explained this result here only for term graphs with eager scope-closure, the approach

can be generalized to non-eager-scope term graphs. To this end scope delimiters have to be placed also
underneath variable vertices. Then variable occurrences do not implicitly close all open extended scopes,
but every extended scope that is open at some position must be closed explicitly by scope delimiters on
all (maximal) paths from that position. The resulting graphs are fully back-linked, and then Thm. 31
guarantees that the arising class of λ -term-graphs is again closed under homomorphism.

For our original intent of getting a grip on maximal subterm sharing in the λ -calculus with letrec or
µ , however, only eager scope-closure is practically relevant, since it facilitates a higher degree of sharing.

Ultimately we expect that these results allow us to develop solid formalizations and methods for
subterm sharing in higher order languages with sharing constructs.

Acknowledgement. We want to thank the reviewers for their helpful comments, and for pointing out
a number of inaccurate details in the submission that we have remedied for obtaining this version.

References
[1] Zena M. Ariola & Stefan Blom (1997): Cyclic Lambda Calculi. In Martin Abadi & Takayasu Ito, editors:

Proceedings of TACS’97, Sendai, Japan, September 23–26, 1997. LNCS 1281, Springer Berlin / Heidelberg,
pp. 77–106, doi:10.1007/BFb0014548.

[2] Zena M. Ariola & Jan Willem Klop (1994): Cyclic Lambda Graph Rewriting. In: Proceedings of the Sym-
posium on Logic in Computer Science (LICS) 1994. pp. 416 –425, doi:10.1109/LICS.1994.316066.

[3] Zena M. Ariola & Jan Willem Klop (1996): Equational Term Graph Rewriting. Fundamenta Informaticae
26(3), pp. 207–240, doi:10.3233/FI-1996-263401.

[4] Stefan Blom (2001): Term Graph Rewriting, Syntax and Semantics. Ph.D. thesis, Vrije Universiteit Amster-
dam.

[5] N. G. de Bruijn (1972): Lambda Calculus Notation with Nameless Dummies, a Tool for Automatic Formula
Manipulation, with Application to the Church-Rosser Theorem. Indagationes Mathematicae 34, pp. 381–392,
doi:10.1016/1385-7258(72)90034-0.

[6] Clemens Grabmayer & Jan Rochel (2012): Expressibility in the Lambda-Calculus with Letrec. Technical
Report arXiv:1208.2383, http://arxiv.org. http://arxiv.org/abs/1208.2383.

[7] Dimitri Hendriks & Vincent van Oostrom (2003): λ. In F. Baader, editor: Proceedings CADE-19. Lecture
Notes in Artificial Intelligence 2741, Springer–Verlag, pp. 136–150.

[8] Simon Peyton Jones (1987): The Implementation of Functional Programming Languages. Prentice-Hall, Inc.
[9] Vincent van Oostrom, Kees-Jan van de Looij & Marijn Zwitserlood (2004): Lambdascope. Extended Abstract

for the Workshop on Algebra and Logic on Programming Systems (ALPS), Kyoto, April 10th 2004. http:
//www.phil.uu.nl/~oostrom/publication/pdf/lambdascope.pdf.

[10] Terese (2003): Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science 55, Cambridge
University Press.

R. Echahed and D. Plump (Eds.): 7th International Workshop on
Computing with Terms and Graphs
EPTCS 110, 2013, pp. 74–81, doi:10.4204/EPTCS.110.8

c© M. Fernández, I. Mackie & M. Walker
This work is licensed under the
Creative Commons Attribution License.

Bigraphical Nets

Maribel Fernández Ian Mackie
Matthew Walker

École Normale Supérieure, Paris, France
École Polytechnique, Palaiseau, France

King’s College London, Dept. of Informatics, London WC2R 2LS, UK

Interaction nets are a graphical model of computation, which has been used to define efficient eval-
uators for functional calculi, and specificallyλ -calculi with patterns. However, the flat structure of
interaction nets forces pattern matching and functional behaviour to be encoded at the same level,
losing some potential parallelism. In this paper, we introduce bigraphical nets, or binets for short, as
a generalisation of interaction nets using ideas from bigraphs and port graphs, and we present a for-
mal notation and operational semantics for binets. We illustrate their expressive power by examples
of applications.

Keywords: Interaction Net, Port Graph, Bigraph, RewritingCalculus.

1 Introduction

Interaction nets [15] are graphical rewrite systems used for the specification of logical proof systems
(e.g., [1, 16]), for the implementation of efficient evaluators for theλ -calculus (e.g., [12, 4, 18]), and for
visual programming (e.g., [13, 20, 19]).

The visual nature of interaction nets makes them well suitedas a specification tool, and, sinceall
the computation steps are explicit and expressed in the sameformalism (there is no external machin-
ery), interaction nets are also well suited for the study of the dynamics of programming languages and
rewriting systems [9, 7, 22]. However, interaction nets have some drawbacks. When the nets are large or
growing during reduction, being able tostructurethe graph is crucial to understand the system modelled,
but interaction nets lack mechanisms to structure the system. Moreover, to formally prove properties of
the system modelled or implement reduction, aformal, algebraic notation, with a precise operational
semantics, should also be available. In this paper, we address these two points:

• First, inspired by Milner’s bigraphs [21], we define a generalisation of interaction nets, which we
call bigraphical nets, or simplybinets, where not only the connectivity but also the hierarchical
structure of the system is taken into account. Binets borrowfrom bigraphs a notion of locality that
is missing in interaction nets.

• Then, we present a formal algebraic notation for binets, with an operational semantics which can
serve as a basis for their implementation.

Related Work. Binets can be seen as hierarchical graph rewriting systems that permit links between
nested nets and external subgraphs (like bigraphs, and unlike hierarchical graphs [6]). Rewriting can take
place across boundaries. Both of these features will be of use in our encoding of theρ-calculus.

Binets inherit from interaction nets the notion of principal port. But, in contrast with interaction nets,
binets do not force all interactions to be binary, and in contrast with bigraphs, they place restrictions on
reactions to simplify the implementation of rule application.

M. Fernández, I. Mackie & M. Walker 75

Interaction nets have been used as an implementation language for functional calculi, and as a tool
to understand their dynamics [12, 4, 17, 18, 8, 7, 11]. Interaction net encodings of theρ-calculus [5],
an extension of theλ -calculus where we can abstract on patterns, not just on variables, shed light on the
implicit parallelism present in theρ-calculus, and at the same time, motivate a generalisation of interac-
tion nets, as shown in [10]. In this paper, we develop and formalise this idea. Our main contribution is a
formal syntax and operational semantics for binets, via a textual calculus.

The class of portgraphs defined by Andrei and Kirchner [3] canalso be seen as a generalisation of
interaction nets, but although binets are graphs with ports, due to their hierarchical nature they cannot be
defined as portgraphs. It would be interesting to consider a generalisation of portgraphs with a notion of
locality; the inclusion of this feature in PORGY [2] could serve as a starting point for the development
of a specification environment based on binets.

2 Background

Interaction Nets. A system of interaction nets is specified by a setΣ of symbols with fixed arities, and
a setR of interaction rules. An occurrence of a symbolα ∈ Σ is called anagent. If the arity of α is
n, then the agent hasn+1 ports: a principal port depicted by an arrow, andn auxiliary ports. Such an
agent will be drawn in the following way:

����
α
?

@ �· · ·x1 xn

A net N is a graph (not necessarily connected) with agents at the vertices and each edge connecting at
most 2 ports. The ports that are not connected to another agent arefree. There are two special instances
of a net: an empty net, and a net consisting only of edges (no agents). Theinterfaceof a net is the set of
free ports of agents and free extremes of wires. We refer to [15] for more details.

An interaction rule((α ,β) =⇒ N) ∈ R replaces a pair of agents(α ,β) ∈ Σ×Σ connected together
on their principal ports (anactive pairor redexand writtenα ⊲⊳ β) by a netN with the same interface.
Rules must satisfy two conditions: all free ports are preserved during reduction (there are no global
operations: only the part of the net involved in the rewrite is modified), and there is at most one rule
for each pair of agents (such a rule will thus be sometimes denoted byα ⊲⊳ β). The following diagram
shows the format of interaction rules (N can be any net built fromΣ).

����
α ����

β-�
@

�

�

@

...
...

x1

xn

ym

y1

=⇒ N
...

...
x1

xn

ym

y1

We use the notation=⇒ for the one-step reduction relation, or==⇒
α⊲⊳β

if we want to be explicit about

the rule used, and=⇒∗ for its transitive and reflexive closure. If a net does not contain any active pairs
then we say that it is in normal form. The key property of interaction nets is that reduction is strongly
confluent. We refer the reader to [15] for more details and examples.

Bigraphs. In [21, 14] a notion of graph transformation system is defined, using nested (or hierarchical)
graphs calledbigraphs. Bigraphs represent two kinds of structure: locality (nodes may occur inside

76 Binets

other nodes) and connectivity (nodes have ports that may be connected by links). We recall the basic
terminology of bigraphs and refer the reader to [21] for details and examples.

A bigraph is a pair of aplace graphand alink graph over the same set of nodes. It has interfaces,
which define the way in which it can be composed with other bigraphs. The place graph, or placing, is
a set of trees with interfaces, and the link graph, or linking, is a hypergraph with interfaces. A placing
has inner and outer interfaces. The inner interface corresponds to thesiteswhere other graphs can be
placed, and the outer interface corresponds to therootsof the trees. The linking also has inner and outer
interfaces, which are names of ports, that is, the points where edges can be attached.

Nodes are labelled bycontrolswith fixed arities; the arity of a control corresponds to the number of
ports of the node. A control isatomicif it cannot contain a nested graph, otherwise it is non-atomic.

The reduction relation is defined by a set of reaction rules, which are pairs of bigraphs (called redex
and reactum). The redex has awidth, corresponding to the number of sites it occupies in the outer
bigraph [14]. A non-atomic controlK can be specified as active, in which case reactions can occur
inside, or passive, in which case reactions in the internal bigraph can only occur after the controlK has
been destroyed.

Interaction nets can be seen as a particular kind of bigraphswithout nesting: all controls (called
agents in interaction nets) are atomic, and have a distinguished port (the principal port). Interaction rules
can be seen as reactions in which both redex and reactum have width 1, and redexes are restricted to just
two controls connected by one link through the distinguished ports.

3 Binets

3.1 Informal presentation

Bigraphs [14] introduce a notion of locality (using nestingto indicate that a graph is local to a certain
node) which is missing in interaction nets. In this section,we define binets as a generalisation of interac-
tion nets to incorporate this feature. We start with an informal definition of binets, contrasting them with
interaction nets, before presenting a formal syntax and semantics for them.

A binet is a labelled graph consisting of a set of nodes (also calledagents) and a set of edges, which
are attached to nodes at connection points calledports. Each edge connects at most two ports. The label
of a node (i.e., the agent’s name) determines its arity, thatis, the number of ports it has. Each agent has a
distinguished port, called theprincipal port, and a (possibly empty) set ofauxiliary ports. An agent can
be located inside another agent, and edges can connect portsof agents situated at different nesting levels
(i.e., edges can cross node boundaries).

Interaction rules, also called reaction rules, define interactions between two agents connected by
their principal ports, or interactions of an agent with its local subnets, preserving the interfaces.

Figure 1 shows a binet representing aρ-term. Ovals and circles represent agents, their names are
written inside; principal ports are marked with an arrow, the free port at the top is marked by a dangling
edge. Theε-agent is drawn outside the→-agent to exploit a non-strict semantics as early in the reduction
process as possible.

In contrast with interaction nets, the left-hand side of a reaction rule can specify the location in which
the reacting agents are, or the locations contained in thesecontrols, and reactions can take place across
boundaries. However, reduction is still local in the sense that it only affects the nodes that match the left
hand side (no global conditions or updates are specified). The latter point is relevant for implementation.

Agents in binets correspond to the notion of control in bigraphs, and binet reaction rules are a partic-
ular class of bigraph reaction rules. Each binet has an associated place graph and link graph, similarly to

M. Fernández, I. Mackie & M. Walker 77

→

@

@

G
→

F

I

ε H

Figure 1: Binet for theρ-term(x→ H)((F → I)G).

bigraphs. All the examples of bigraphs for theπ-calculus and ambient calculus given in [14] (part I) can
be recast as binets by adding principal ports and copy/eraseagents (controls) to preserve the interface of
the reactions.

Comparing with the properties of interaction nets, we remark that confluence does not hold in general
for binets, because of the possibility of interactions across boundaries. To study the formal properties of
binet reduction, below we give a calculus for binets.

3.2 A calculus for binets

As Milner [21] stated: “Diagrams are valuable for rapid appreciation of a system’s structure. On the
other hand, algebra is essential to express [...] the ways inwhich a system may be resolved into compo-
nents.” In this section we give a formal, algebraic presentation for binets. First we give the syntax of the
language, and then we present an operational semantics for programs written in this language.

Syntax. A textual syntax for binets has to capture, dually, the connections between agents (including
where those connections are principal ports), differentiating between internal or external with respect to
the originating agent and also the locality of agents withina system, i.e., their physical position within
other agents. It is the intention of this syntax to unambiguously state these three properties without
over-complication.

We define below agents and binets over asignatureA ,L, whereA is a set ofagent names, each
with an associated arity(n,m) corresponding to the number of ports in its internal and external interface,
respectively, andL is a set of port labels. We assumeL∩A = /0.

Definition 3.1 (Agent) An agentover the signatureA , L is written Al〈E | I |N〉, where A∈ A is the
agent name, which determines its arity(n,m), l ∈ L is the label given to the principal port of A, and
the lists I,E of lengths n,m respectively, whose elements are port labels in L, denote the internal and
external agent interfaces; the order denotes the geographic position of the ports (in similar fashion to
interaction nets reading in a clockwise direction from the principal port for external ports and, without
loss of precision, in an arbitrary clockwise direction for interior ports). N is a (possibly empty) list
corresponding to the set of agents located within the agent.

The definition above is inductive (due to the inclusion of thesetN within A) but not recursive; agents are
not permitted to be located within themselves.

Definition 3.2 (Binet) A binet over the signatureA , L is defined as a set of agents and wires overA ,
L. Agents have already been defined. Awire is an edge joining two ports, written a−b where a,b are the

78 Binets

labels of the ports. Each port label in L occurs at most twice in a binet; thenet interfaceof the binet is
defined as the subset of labels occurring only once.

The binet containing no agents and wires is a special case. For brevity, agents of the form Ai〈X | /0| /0〉
will be denoted Ai〈X〉 and the particular case when X= /0 will be written Ai〈〉.

A binet, similar to a bigraph, can be decomposed into a place graph and a link graph. The link
graph is explicit in the definition of binet (a binet is a set ofagents and wires); the place graph can be
reconstructed from the nesting of agents.

Reduction in binets occurs onactive pairs, which are pairs of agents connected via their principal
ports, similarly to interaction nets although significantly rules in binets must be aware of locality context.
More precisely, a rule may affect the agents in the place graph of the active pair. We illustrate it with an
example: the interaction rule presented in [10] between thematching agent,M and any other agentα is
one such occurrence and would be written:

Ma〈b| /0|X〉 , αa〈Y〉 ⇒ αb
M〈Y | /0|X〉

The metavariablesX andY denote a subnet and series of labels respectively that remain unchanged under
graph reduction. Here, the interaction between the agentsM andα causes the subgraph located within
the agentM (denoted byX) to move to the new agent namedαM with principal portb.

Contrary to interaction nets, binets permit reductions to occur on certain graph configurations despite
the nonexistence of an active pair, calledinactive rewriting in the sequel. See for example the config-
uration in [10] of an empty matching agent,M, where the net is rewritten to a wire without interaction
through active pairs. This is written as follows (the arrow explicitly shows the type of rule being applied):

Ma〈b〉=⇒inactive a−b

The reduction calculus is defined below, but first we give an example: a reduction sequence for
the binet shown in the previous subsection, representing the ρ-term (x → H)((F → I)G). The textual
representation of each binet is shown in the table below.

→

@

@

G
→

F

I

ε H

⇒∗

M

G
M

F

I

ε H

⇒∗

I

ε

⊥

ε H

⇒∗ H

First Binet Second Binet Third Binet Fully Reduced
→ x〈a|b| /0〉 Ma〈c〉 Hc〈〉 Hc〈〉
εb〈〉 Ha〈〉
Ha〈〉 ⊥d〈〉
@x〈c,d〉 εd〈〉 εd〈〉
@y〈d,e〉 M f 〈d | /0|Fe〈〉〉
→ y〈 f |g|Fg〈〉〉 I f 〈〉 I f 〈〉
I f 〈〉 Ge〈〉 ε f 〈〉
Ge〈〉

M. Fernández, I. Mackie & M. Walker 79

The second binet contains three active pairs but parallel firing of the rule for agentsM f andI f with
the rule forFe andGe would clearly be incorrect; the general rule forM with α involves a rewriting
that affects all of the nested nets withinM, hence a reduction strategy is required. Informally, thereis
a choice to delay either active pair until the other has had the opportunity to reduce (although in this
instance either derivation will eventually lead to the intended destruction of this disjoint net). A strategy
is also required in the same configuration to either fire the rule for Ma andHa or, as in the example, to
perform an inactive rewrite onMa and reduce it to the wirea−c (see the second textual rule above).

Reduction Rules. Rewrite rules follow the simplicity of interaction nets when the reductum has no
rewrite implications for any agent except for the agent (in the case of inactive rewriting) or agents (active
pair rewriting) directly involved. However, due to the moreexpressive graph rewriting allowed by binets,
rewrite rules require additional machinery to resolve rewriting of nested agents within the place graph of
the net. Unlike interaction net rules they incorporate metavariables and an additional strategy language.

A priori knowledge of how a rule may affect the surrounding subnet is essential when the rule is
defined. For example, theε rule within theρ-calculus scheme is the garbage collection agent responsible
for deleting nets. This agent propagates through subnets, terminating when it forms an active pair with
anotherε-agent, hence when defining the interaction ofε andM, the subnets withinM should also be
reduced, as follows:

εa〈〉, Ma〈b| /0|X〉 =⇒ εb〈〉, X, foreachx in I(X): εx〈〉 andε x̄〈〉

whereI(X) is the collection of labelled ports that constitute the interface of the nested netX andx̄ is a
fresh label for the port outside ofM that was connected to the interface atx.

The ability of binets to rewrite over agent boundaries meansthe efficiency (measured in the number
of interactions: typical of interaction nets although cruder for binets) can be improved by rephrasing the
rule to propagateε only over the wires that are free in this subnet (i.e., those wires that extend beyond
the locality of theM-agent). Each of these wires can be identified by a label appearing only once in the
subnetX and so the above rule can be reinterpreted as follows, whereX is removed in one step:

εa〈〉, Ma〈b| /0|X〉=⇒ εb〈〉, foreachx in LX wherex is unique:εx〈〉

whereLX is the multiset of labelled ports inX.
The strategy language is left informal at this stage with full details to be provided in later technical

reports.

Reduction Calculus. The reduction calculus comprises four main parts: firstly populating a set of the
active pairs within a binet and also those (sub)nets that areconfigured in a way that permits inactive
rewriting. This collection of active pairs and nets is then prioritised according to a given reduction
strategy and, crucially, a collection of agents and nets that can safely be rewritten in parallel is identified.
Then, both active and inactive rewriting is performed and, lastly, a tidying stage is performed to eliminate
every explicitly written wire in the net.

Collect LetCA be the set of labels of principal ports involved in active pairs (these are easily computed:
scan the graph and identify each labell that appears twice as a principal port) andCI be the set of
binets that are isomorphic to the left hand side of inactive rewriting rules (computed using standard
subgraph matching algorithms that can be optimised due to occurrence of principal ports).

80 Binets

Prioritise According to the reduction strategy implemented (weighted, stochastic, typed and so on) group all
safenets,Cs. A collection of safe nets is one where rewriting (either active or inactive) can occur
in parallel without conflict. The safety, or otherwise, of potential net rewriting is inferred by the
rules: any rule of the formαm〈−| − |X〉, . . . =⇒ β n〈−| − |X′〉 whereX 6= X′ cannot safely be
rewritten at the same time (or in the samepass) as any rule that rewrites withinX.

Rewrite For each active pair and agent withinCs, apply rule. For simple rules where rewriting does not
occur within agent borders and there are no internal edges:

αx〈u1, . . . ,um〉,β x〈v1, . . . ,vm〉=⇒Γw1
1 〈w2, . . . ,wp〉, . . . ,

Γwr
q 〈wr+1, . . . ,ws〉,

u1−wi, . . . ,um−wi′,

v1−wi′′, . . . ,vn−wi′′′

whereΓw are the (possibly empty) agents that are produced on rewriting andw are the intermediary
labels given to the wires of the produced net. Note that the size of w is potentially larger than
the number of ports to the left hand side of the rule. The casesfor rules whose agents have
internal ports and rewriting occurs across borders incorporates a richer programmatic syntax and
the resulting operational calculus is more complex.

Tidy If w is a label withinΓ and there existsu−w then substitutew by u within Γ (Γ[w/u]).

4 Conclusion

We have presented a new visual language generalising interaction nets to incorporate features from bi-
graphs. Domains of application include concurrent and reactive systems. Not only can binets model
these systems both graphically and textually, but they are also directly implementable. We are currently
working on the implementation of an abstract machine for binets, inspired by the interaction net machines
defined in [22].

References

[1] Sandra Alves, Maribel Fernández & Ian Mackie (2011):A new graphical calculus of proofs. In Echahed,
editor: Proceedings of TERMGRAPH 2011, EPTCS, pp. 69–84. Available athttp://dx.doi.org/10.
4204/EPTCS.48.8.

[2] Oana Andrei, Maribel Fernández, Hélène Kirchner, Guy Melaņcon, Olivier Namet & Bruno Pinaud (2011):
PORGY: Strategy-Driven Interactive Transformation of Graphs. In Echahed, editor:Proceedings of TERM-
GRAPH 2011, EPTCS, pp. 54–68. Available athttp://dx.doi.org/10.4204/EPTCS.48.7.

[3] Oana Andrei & Hélène Kirchner (2008):A Rewriting Calculus for Multigraphs with Ports. Electr. Notes
Theor. Comput. Sci.219, pp. 67–82. Available athttp://dx.doi.org/10.1016/j.entcs.2008.10.
035.

[4] Andrea Asperti, Cecilia Giovannetti & Andrea Naletto (1996): The Bologna Optimal Higher-order Ma-
chine. Journal of Functional Programming6(6), pp. 763–810. Available athttp://dx.doi.org/10.1017/
S0956796800001994.

[5] Horatiu Cirstea & Claude Kirchner (2001):The rewriting calculus — Part Iand II . Logic Journal of the
Interest Group in Pure and Applied Logics9(3), pp. 427–498. Available athttp://dx.doi.org/10.1093/
jigpal/9.3.339.

M. Fernández, I. Mackie & M. Walker 81

[6] Frank Drewes, Berthold Hoffmann & Detlef Plump (2000):Hierarchical Graph Transformation. In Tiuryn,
editor:Proc. Foundations of Software Science and Computation Structures (FOSSACS 2000), Lecture Notes
in Computer Science1784, pp. 98–113. Available athttp://dx.doi.org/10.1007/3-540-46432-8_7.

[7] M. Fernández & L. Khalil (2003): Interaction nets with McCarthy’s amb: Properties and Applica-
tions. Nordic Journal of Computing10(2), pp. 134–162. Available athttp://dx.doi.org/10.1016/
S1571-0661(05)80363-9.

[8] M. Fernández & I. Mackie (1996):From Term Rewriting to Generalised Interaction Nets. In: Proceedings of
PLILP’96. Programming Languages: Implementations, Logics, and Programs, Lecture Notes in Computer
Science1140, Springer-Verlag. Available athttp://dx.doi.org/10.1007/3-540-61756-6_94.

[9] Maribel Fernández & Ian Mackie (1998):Interaction Nets and Term Rewriting Systems. Theoretical Com-
puter Science190(1), pp. 3–39. Available athttp://dx.doi.org/10.1016/S0304-3975(97)00082-0.

[10] Maribel Fernández, Ian Mackie & Fraņcois Régis Sinot (2006):Interaction Nets vs. the rho-calculus: Intro-
ducing Bigraphical Nets. Electr. Notes Theor. Comput. Sci.154(3), pp. 19–32. Available athttp://dx.
doi.org/10.1016/j.entcs.2006.05.004.

[11] Fabien Fleutot (2004):Encoding an Object Calculus into Interaction Nets. In M. Fernandez, editor:Proc.
of the 2nd Int. Workshop on Term Graph Rewriting (TERMGRAPH 2004), ENTCS, Rome. Available at
http://dx.doi.org/10.1016/j.entcs.2005.03.024.

[12] Georges Gonthier, Martı́n Abadi & Jean-Jacques Lévy (1992):The Geometry of Optimal Lambda Reduction.
In: Proceedings of the 19th ACM Symposium on Principles of Programming Languages (POPL’92), ACM
Press, pp. 15–26. Available athttp://dx.doi.org/10.1145/143165.143172.

[13] Abubakar Hassan, Ian Mackie & Jorge Sousa Pinto (2008):Visual Programming with Interaction Nets. In
Gem Stapleton, John Howse & John Lee, editors:Diagrams, Lecture Notes in Computer Science5223,
Springer, pp. 165–171. Available athttp://dx.doi.org/10.1007/978-3-540-87730-1_17.

[14] O. Jensen & R. Milner (2004):Bigraphs and mobile processes (revised). Technical Report 580, Computer
Laboratory, University of Cambridge.

[15] Yves Lafont (1990):Interaction Nets. In: Proceedings of the 17th ACM Symposium on Principles of Pro-
gramming Languages (POPL’90), ACM Press, pp. 95–108. Available athttp://dx.doi.org/10.1145/
96709.96718.

[16] Yves Lafont (1995):From Proof Nets to Interaction Nets. In J.-Y. Girard, Y. Lafont & L. Regnier, editors:
Advances in Linear Logic, London Mathematical Society Lecture Note Series222, Cambridge University
Press, pp. 225–247. Available athttp://dx.doi.org/10.1017/CBO9780511629150.012.

[17] Ian Mackie (1994):The Geometry of Implementation. Ph.D. thesis, Department of Computing, Imperial
College of Science, Technology and Medicine.

[18] Ian Mackie (2004):Efficientλ -evaluation with interaction nets. In V. van Oostrom, editor:Proc. 15th Int.
Conference on Rewriting Techniques and Applications (RTA’04), Lecture Notes in Computer Science3091,
Springer-Verlag, pp. 155–169. Available athttp://dx.doi.org/10.1007/978-3-540-25979-4_11.

[19] Ian Mackie (2009):A rewriting paradigm for program and algorithm animation. In: VL/HCC, IEEE, pp.
170–173. Available athttp://doi.ieeecomputersociety.org/10.1109/VLHCC.2009.5295272.

[20] Ian Mackie (2010):A Visual Model of Computation. In Jan Kratochvı́l, Angsheng Li, Jirı́ Fiala & Petr
Kolman, editors:TAMC, Lecture Notes in Computer Science6108, Springer, pp. 350–360. Available at
http://dx.doi.org/10.1007/978-3-642-13562-0_32.

[21] Robin Milner (2001):Bigraphical Reactive Systems. In Kim Guldstrand Larsen & Mogens Nielsen, editors:
CONCUR, Lecture Notes in Computer Science2154, Springer, pp. 16–35. Available athttp://dx.doi.

org/10.1007/3-540-44685-0_2.

[22] Jorge Sousa Pinto (2000):Sequential and Concurrent Abstract Machines for Interaction Nets. In J. Tiuryn,
editor: Proceedings of Foundations of Software Science and Computation Structures (FOSSACS), Lecture
Notes in Computer Science1784, Springer-Verlag, pp. 267–282. Available athttp://dx.doi.org/10.

1007/3-540-46432-8_18.

